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1. Introduction. Discrete cubic splines which interpolate given func-
tional values at one point lying in each mesh interval of a uniform mesh
have been studied in [2]. The case in which these points of interpolation
coincide with the mesh points of a nonuniform mesh was studied earlier by
Lyche [4], [5]. For further results in this direction reference may be made
to Dikshit and Rana [3]. In order to obtain the sharp convergence proper-
ties, we study in the present paper the problem of one point interpolation
by discrete splines when the interpolatory points are not necessarily equi-
spaced. The results, obtained in this paper include in particular some
earlier results due to Lyche [5] or uniform mesh, Dikshit and Powar [2]
and Chatterjee and Dikshit [1].

2. Existence and uniqueness. Let P a-- x0xl. xn b denote
a partition of [a, b] with equidistant mesh points so that p=x,--x,_ for all
i. For a given h0, suppose a real unction s(x, h) defined over [a, b] and
its restriction on [x,_l, x,] is a polynomial s, o degree 3 or less or i--1, 2,
.., n. Then s(x, h) defines a discrete cubic spline if

(2.1) (s.+--s)(x+]h)--O, ]-- -1, O, 1 i=1, 2, ..., n-1.
For an equivalent definition of a discrete cubic spline we introduce the
difference operator

D)f(x) f(x) Dlf(x) (f(x- h) f(x- h)) 2h
Df(x) =.(f(x+ h) 2f(x)+f(x h)) / h2.

We also use basic polynomials x( given by
x =xj, ]=0, 1, 2; x3 =x(x2-h2)

and observe that the condition (2.1) has the following equivalent form
(2.2) DIJ)s(x, h)----DiJs/(x, h), ]--0, 1, 2; i--1, 2, ..., n-1.
The class of all discrete cubic splines on P is denotec[ by D(3, P, h) whereas
D(3, P, h) denotes the class of all b--a periodic discrete cubic splines of
D(3, P, h).

We suppose that (0)7__ is a real periodic sequence with period n so
that ---/, i=1,2,.... Considering the points y--x_-Op, 0__1,
i-- 1, 2, ., n, we propose the following.

Problem 1. Given h0, for what restrictions on () does there exist
a unique spline s(x, h) e D(3, P, h) satisfying the interpolatory condition
(2.3) s(y, h)=f(y), i--1, 2, ..., n,
where (f(y)} is a given sequence of functional values ?


