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1o Let F be a field and let F be a (fixed) algebraic closure of F. An
extension field K of F (F_KF) will be said to be a Galois quaternion ex-
tension of F if KIF is a Galois extension and its Galois group Gal (K/F) is
isomorphic to the quaternion group of order 8.

Theorem. Let F be a field of the characteristic = 2 and let F(/)
(m F =-{xlx e F}) be a quadratic extension of F.
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Then K F(w) is a Galois quternion exteion of F.
Proof. Let M=F(J,) be a bicyclic biquadratic extension of F

nd let Gal (M/F)={ao=I, a, a, a} where ao= lz (the identity),. (J,) >(-J, ),. (,) (_, -).
Let K=M() ( e M) and let a" KoF (i=0,1,2,3) denote any (but fixed once
for all) embeddings of K into F which extend a (i=0, 1, 2, 3) respectively.

Now, calculating
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where e.= 1 (i=0, 1, 2, 3) are the signs depending on a (i=O, 1, 2, 3) re-
spectively. Since, as seen from the above calculations, w (i=0, 1, 2, 3) are
all in K or any extension a" KF of a (i=0, 1, 2, 3), it follows that K=
M(w) is Galois extension of F and a (i=0, 1, 2, 3) are automorphisms of K


