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§1. Introduction. Let {(s) be the Riemann zeta function. In [2] and
[5], the author has shown that for T>T, 0<4«1 and for each integer
k>1,
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where we put S(t)=(1/r)arg{(1/2+it) as usual. This formula has been
proved to be powerful in the theory of the Riemann zeta function (cf. [7],
[9] and [10], for example). Recently, some attentions have been paid to it
from the view point of the comparison with the distribution of the eigen-
values of the Gaussian Unitary Ensembles (cf. [1], [3], [7] and [12]).
In the present article, we shall assume the Riemann Hypothesis and
refine the above result for k=1 as follows. To state our result we put
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where >0, 7 and 7’ run over the imaginary parts (£0) of the zeros of {(s).
Theorem. Suppose that 0<4=0(). Then we have for T>T,,
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We shall prove this by applying Goldston [8] while we have applied Sel-
berg [13] to prove our previous mean value theorem described above.

Some applications of this theorem will be discussed in the forthcoming
paper [6].

§2. Proof of Theorem. We shall use first the following Goldston’s
explicit formula for S(¢) (cf. p. 157 of [8]). For t>1,t+7, x=(T/2x)? and
0<8<1,
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