78. On Certain Real Quadratic Fields with Class Numbers 3 and 5

By Shin-ichi Katayama*) and Shigeru Katayama**)
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 9, 1990)

Let d be a square-free integer of the form $d=r^{2}+4$ or $r^{2}+1(r \in N)$. Recently H.K. Kin, M.-G. Leu and T. Ono proved in [4] that there exist 11 real quadratic fields $\boldsymbol{Q}(\sqrt{d})$ with class number one with at most one exception of d. In [5] Leu proved further that there exist 16 real quadratic fields $\boldsymbol{Q}(\sqrt{ } \bar{d})$ of class number 2 with at most one exception of d.

In this paper, we shall consider the fields of the same kind with class numbers 3 and 5 . Our main theorem is obtained by using almost the same methods as in [4], [5] and by the help of a computer.

We denote the class number of the quadratic field $\boldsymbol{Q}(\sqrt{d})$ by $h(d)$, which we shall abbreviate to h, if there is no fear of confusion. By the genus theory of quadratic fields, we have the following lemma.

Lemma 1. If d is square-free and $d=r^{2}+4$ or $r^{2}+1$ and $h(d)$ is odd, then d is a prime.

In the following, we restrict ourselves to the case $h(d)=3$ or 5 . Therefore d is a prime and is denoted by p.

Then p should be expressed in the form $p=m^{2}+4$ (m : odd) or $p=4 m^{2}$ $+1(m \in N)$. We note here that $p \equiv 1(4)$ and the fundamental unit $\varepsilon_{p}=$ $(t+u \sqrt{p}) / 2$ of $\boldsymbol{Q}(\sqrt{p})$ is given with $t=m, u=1$, in the case $p=m^{2}+4$, and given with $t=4 m, u=2$ in the case $p=4 m^{2}+1$.

Let χ_{p} be the Kronecker character belonging to $\boldsymbol{Q}(\sqrt{p})$ and $L\left(s, \chi_{p}\right)$ be the corresponding L-series. Then by Theorem 2 of [6], for any $x \geqq 11.2$ and $p \geqq e^{x}$, we have

$$
L\left(1, \chi_{p}\right)>\frac{0.655}{x} p^{-1 / x}
$$

with one possible exception of p. From class number formula, we obtain

$$
\begin{aligned}
h(p) & =\frac{\sqrt{p}}{2 \log \varepsilon_{p}} L\left(1, \chi_{p}\right)>\frac{0.655}{x} \frac{\sqrt{p} p^{-1 / x}}{2 \log (u \sqrt{p})} \\
& =\frac{0.655}{x} \frac{p^{(x-2) / 2 x}}{2 \log u+\log p}>\frac{0.655 e^{(x-2) / 2}}{x(x+3)} .
\end{aligned}
$$

Since $f(x)=\frac{e^{(x-2) / 2}}{x(x+3)}$ is a monotone increasing function for $x \geqq 11.2$, we have

$$
\begin{aligned}
& h(p)>0.655 f(17)=3.48 \cdots>3(x \geqq 17), \\
& h(p)>0.655 f(18)=5.16 \cdots>5(x \geqq 18) .
\end{aligned}
$$

*) College of General Education, Tokushima University.
**) College of General Education, Tokushima Bunri University.

