78. On Certain Real Quadratic Fields with Class Numbers 3 and 5

By Shin-ichi KATAYAMA*) and Shigeru KATAYAMA**)

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 9, 1990)

Let d be a square-free integer of the form $d=r^2+4$ or r^2+1 $(r \in N)$. Recently H.K. Kin, M.-G. Leu and T. Ono proved in [4] that there exist 11 real quadratic fields $Q(\sqrt{d})$ with class number one with at most one exception of d. In [5] Leu proved further that there exist 16 real quadratic fields $Q(\sqrt{d})$ of class number 2 with at most one exception of d.

In this paper, we shall consider the fields of the same kind with class numbers 3 and 5. Our main theorem is obtained by using almost the same methods as in [4], [5] and by the help of a computer.

We denote the class number of the quadratic field $Q(\sqrt{d})$ by h(d), which we shall abbreviate to h, if there is no fear of confusion. By the genus theory of quadratic fields, we have the following lemma.

Lemma 1. If d is square-free and $d=r^2+4$ or r^2+1 and h(d) is odd, then d is a prime.

In the following, we restrict ourselves to the case h(d) = 3 or 5. Therefore d is a prime and is denoted by p.

Then p should be expressed in the form $p=m^2+4$ (m: odd) or $p=4m^2$ +1 (m \in N). We note here that $p\equiv 1(4)$ and the fundamental unit $\varepsilon_p = (t+u\sqrt{p})/2$ of $Q(\sqrt{p})$ is given with t=m, u=1, in the case $p=m^2+4$, and given with t=4m, u=2 in the case $p=4m^2+1$.

Let λ_p be the Kronecker character belonging to $Q(\sqrt{p})$ and $L(s, \lambda_p)$ be the corresponding *L*-series. Then by Theorem 2 of [6], for any $x \ge 11.2$ and $p \ge e^x$, we have

$$L(1, \chi_p) > \frac{0.655}{x} p^{-1/x}$$

with one possible exception of p. From class number formula, we obtain

$$h(p) = rac{\sqrt{p}}{2\logarepsilon_p} L(1, arepsilon_p) > rac{0.655}{x} rac{\sqrt{p} \, p^{-1/x}}{2\log(u\sqrt{p})} \ = rac{0.655}{x} rac{p^{(x-2)/2x}}{2\log u + \log p} > rac{0.655 \, e^{(x-2)/2}}{x(x+3)}.$$

Since $f(x) = \frac{e^{(x-2)/2}}{x(x+3)}$ is a monotone increasing function for $x \ge 11.2$,

we have

$$h(p) > 0.655 f(17) = 3.48 \dots > 3 \ (x \ge 17),$$

 $h(p) > 0.655 f(18) = 5.16 \dots > 5 \ (x \ge 18).$

*) College of General Education, Tokushima University.

**' College of General Education, Tokushima Bunri University.