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1. Introduction.
region contained in R.
fined on D. We denote by R the set o all n n. real matrices.
an n-dimensional vector Vf(x) and an n n matrix H(x) by

Vf(x) (f(x) x) (l__</<__n)
and

H(x)=(f(x)/xx) (1_], kn).
For any x e R, we shall use the norms x and x]l defined by

respectively.
a.re defined as

Let x--(x, x,..., x,) be a vector in R and D a
Let f(x) be a real-valued nonlinear unction de-

Define

l_i<:n i---1

The corresponding matrix norms, denoted by IIAII and tlAII.,

IIA I=max )a,] and )A ,=2/,
l<i_n j=l

respectively, where A--(a)eR, and is the maximum eigenvalue of
A’A, A* being the transposed matrix of A. We also define the matrix
norm A ll by

In ths ection, we shII sume the me condition (A.1)=(A,) in
[8 except o (A.1).

(A.1) ?() three time continuousI dientible on D.
(A.E) hee exist oint D isin V()=0.
(A.3) The n n symmetric matrix H() is positive definite.
(A.4) is a constant satisfying 0 2.

We see that f(x) has a local minimum at by conditions (A.1)-(A.3). For
computational purpose, we have proposed in [5, (2.1)] an iteration method

(1.1) x(+" =x()- Vf(x())

for finding x under conditions (A.1)-(A.4).
As mentioned in [2], [3] and [4], Henrici [1, p. 116] has considered a

ormula, which is called the Aitken-Steffensen formula. Now, we have
studied the above Aitken-Steffensen formula for systems of nonlinear equa-
tions in [2], [3] and [4], and shown [2, Theorem 2], [3, Theorem 2] and [4,
Theorem 1].


