By Tatsuo NODA

Faculty of Engineering, Toyama Prefectural University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1990)

1. Introduction. Let $x = (x_1, x_2, \dots, x_n)$ be a vector in \mathbb{R}^n and D a region contained in \mathbb{R}^n . Let f(x) be a real-valued nonlinear function defined on D. We denote by $\mathbb{R}^{n \times n}$ the set of all $n \times n$ real matrices. Define an *n*-dimensional vector $\nabla f(x)$ and an $n \times n$ matrix H(x) by

 $\nabla f(x) = \left(\partial f(x) / \partial x_i\right) \qquad (1 \le i \le n)$

and

$$H(x) = (\partial^2 f(x) / \partial x_j \partial x_k) \qquad (1 \le j, k \le n)$$

For any $x \in \mathbb{R}^n$, we shall use the norms ||x|| and $||x||_2$ defined by

$$\|x\| = \max_{1 \le i \le n} |x_i|$$
 and $\|x\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$,

respectively. The corresponding matrix norms, denoted by ||A|| and $||A||_{s}$, are defined as

 $\|A\| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$ and $\|A\|_s = \lambda^{1/2}$,

respectively, where $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, and λ is the maximum eigenvalue of A^*A , A^* being the transposed matrix of A. We also define the matrix norm $||A||_E$ by

$$\|A\|_{E} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}\right)^{1/2}$$

In this section, we shall assume the same conditions (A.1)-(A.4) as in [5] except for (A.1).

- (A.1) f(x) is three times continuously differentiable on D.
- (A.2) There exists a point $\bar{x} \in D$ satisfying $\nabla f(x) = 0$.
- (A.3) The $n \times n$ symmetric matrix $H(\bar{x})$ is positive definite.
- (A.4) β is a constant satisfying $0 < \beta < 2$.

We see that f(x) has a local minimum at \bar{x} by conditions (A.1)-(A.3). For computational purpose, we have proposed in [5, (2.1)] an iteration method

(1.1)
$$x^{(k+1)} = x^{(k)} - \frac{\beta}{\|H(x^{(k)})\|_{E}} \nabla f(x^{(k)})$$

for finding \bar{x} under conditions (A.1)–(A.4).

As mentioned in [2], [3] and [4], Henrici [1, p. 116] has considered a formula, which is called the Aitken-Steffensen formula. Now, we have studied the above Aitken-Steffensen formula for systems of nonlinear equations in [2], [3] and [4], and shown [2, Theorem 2], [3, Theorem 2] and [4, Theorem 1].