49. Compactness Criteria for an Operator Constraint in the Arkin-Levin Variational Problem

By Toru MARUYAMA

Department of Economics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., June 13, 1989)

1. Introduction. Let (S, \mathcal{E}_S, μ) and (T, \mathcal{E}_T, ν) be measure spaces and assume that a trio of functions $u: S \times T \times \mathbb{R}^l \to \mathbb{R}$, $g: S \times T \times \mathbb{R}^l \to \overline{\mathbb{R}}^k$, and $\omega: T \to \mathbb{R}^k$ is given. Consider the well-known Arkin-Levin variational problem formulated as follows:

(P)

$$\begin{array}{c}
Maximize \int_{s \times T} u(s, t, x(s, t)) d(\mu \otimes \nu) \\
subject to \\
\int_{s} g(s, t, x(s, t)) d\mu \leq \omega(t) \quad a.e.
\end{array}$$

The existence of optimal solutions for (P) has been investigated by Arkin-Levin [1] and Maruyama [5], [6], where a special kind of infinite dimensional Ljapunov measure played a crucial role. In this paper, we shall present a more classical alternative approach to the existence problem, based upon the Continuity Theorem for nonlinear integral functionals due to Ioffe [3] and the Compactness Theorem stated and proved in the next section.

2. Compactness Theorem.

Theorem 1 (Compactness Theorem). Let (S, \mathcal{E}_s, μ) and (T, \mathcal{E}_T, ν) be finite measure spaces and $f: S \times T \times \mathbb{R}^i \to \overline{\mathbb{R}}$ be $(\mathcal{E}_s \otimes \mathcal{E}_T \otimes \mathcal{B}(\mathbb{R}^i), \mathcal{B}(\overline{\mathbb{R}}))$ measurable, where $\mathcal{B}(\cdot)$ stands for the Borel σ -field on (\cdot) . We denote by $f^*(s, t, \cdot)$ the Young-Fenchel transform of $x \mapsto f(s, t, x)$ for any fixed $(s, t) \in S \times T$; i.e. $f^*(s, t, y) = \sup_x (\langle y, x \rangle - f(s, t, x)), y \in \mathbb{R}^i$. If f satisfies the growth condition:

$$\operatorname{Dom} \int_{S imes T} |f^*(s, t, y)| d(\mu \otimes
u) = \mathbf{R}^t;$$

i.e. $\int_{S imes T} |f^*(s, t, y)| d(\mu \otimes
u) < \infty$ for all $y \in \mathbf{R}^t$,

then the set

$$F_{c} = \left\{ x \in L^{1}(S \times T, \mathbf{R}^{t}) \middle| \int_{S} f(s, t, x(s, t)) d\mu \leq c(t) \ a.e. \right\}$$

is weakly relatively compact in $L^1(S \times T, \mathbf{R}^l)$ for any $c \in L^1(T, \mathbf{R})$.

We need a lemma due to Ioffe-Tihomirov [4] (p. 358-359).

Lemma. Let (T, \mathcal{E}, η) be a measure space and $f: T \times \mathbb{R}^{l} \to \overline{\mathbb{R}}$ be a measurable function which satisfies the growth condition:

$$\mathrm{Dom}\int_{T}|f^{*}(t,y)|d\eta\!=\!R^{\iota}; \hspace{0.3cm} i.e. \hspace{0.1cm}\int_{T}|f^{*}(t,y)|d\eta\!<\!\infty \hspace{0.3cm} ext{ for all } y\in R^{\iota}.$$