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1. Introduction. Let (S, , [) and (T, ’r, ,) be measure spaces and
assume that a trio of functions u:STR--.R, g:STR-, and
o:T-R is given. Consider the well-known Arkin-Levin variational
problem formulated as follows:

Maximize u(s, t, x(s, t))d(/(R))
JST

(P) subject to

g(s, t))dz<=o(t) a.e.t, X(8,
s

The existence of optimal solutions or (P) has been investigated by
Arkin-Levin [1] and Maruyama [5], [6], where a special kind o infinite
dimensional Ljapunov measure played a crucial role. In this paper, we
shall present a more classical alternative approach to the existence
problem, based upon the Continuity Theorem or nonlinear integral
unctionals due to Ioffe [3] and the Compactness Theorem stated and
proved in the next section.

2. Compactness Theorem.
Theorem 1 (Compactness Theorem). Let (S, , [) and (T, g’r, ,) be

finite measure spaces and f :STR- be (’s(R)’r(R),(/))-
measurable, where _(.) stands for the Borel a-field on (.). We denote
by f*(s, t,-) the Young-Fenchel transform of xf(s, t, x) for any fixed
(s, t) e S T; i.e. f*(s, t, y)-SUpx(<y, x>-- f(s, t, x)), y e R. If f satisfies
the growth condition"

sr If*(s, t, y)Id(/,)=RDom

[ If*(s, t, y)[d(g(,) oo or all y e R,i.e.
JST

then the set

is weakly relatively compact in L(S T,R) for any c e L(T, R).
We need a lemma due to Ioffe-Tihomirov [4] (p. 358-359).
Lemma. Let (T,C,) be a measure space and f TR-- be a

measurable function which satisfies the growth condition"

[ If*(t,y)ld=R; i.e. If*(t,y)ldoo or all yeDcm R
dT JT


