29. Deforming Twist Spun 2-Bridge Knots of Genus One

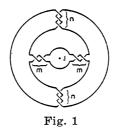
By Taizo KANENOBU

Department of Mathematics, Kyushu University

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1988)

We work in the *PL* category. Zeeman's k-twist spin of an n-knot K, $k \neq 0$, is a fibered (n+1)-knot with fiber punctured k-fold branched cyclic cover of S^{n+2} branched over K [11]. Combining an untwisted deformation of an n-knot with k-twist spinning, $k \neq 0$, Litherland [4] constructed a new fibered (n+1)-knot; especially he identified the fiber of an *l*-roll k-twist spun knot. A 2-bridge knot of genus one C(2m, 2n) has a period q of order 2, that is, rotation q of S^3 with period 2 and axis J which leaves C(2m, 2n) invariant. See Fig. 1, where m (resp. n) denotes the number of half twists, right handed if m > 0 (resp. n < 0), left if m < 0 (resp. n > 0); C(4, 6) in illustration. Making use of this period, we can construct a deforming twist spun 2-knot. We visualize the fiber (theorem), using the surgery technique by Rolfsen [8]. From this we have:

Corollary. There exists a fibered 2-knot in S^4 whose fiber is a punctured Seifert manifold with invariant (b; (2, 1), (2, 1)), (2, 1)), b=1, 4, that is, a prism manifold [6] with fundamental group $Q \times Z_{_{12b+31}}$, where Q is the quaternion group of order 8.



Hillman [1] determined all the 2-knot groups with finite commutator subgroups. Yoshikawa [10] realized them as twist spun knots in S^4 except in the case when the commutator subgroup is $Q \times Z_m$, m (>1) is odd, when any twist spun knot cannot realize [2, Chapter 5] and Yoshikawa only got a fibered 2-knot in a homotopy 4-sphere. Morichi [5] realized an embedding of every punctured prism manifold in S^4 . Plotnick and Suciu [7] determined all the fibered 2-knots in a homotopy 4-sphere with fiber a punctured spherical space form; it is not known weather all of them, including the above case, can be realized as fibered 2-knots in S^4 .

Construction of a fibered 2-knot. The circle S^1 is taken to be the quotient space either

 $R/\theta \sim \theta + 1$ for all $\theta \in R$, or $I/0 \sim 1$,