29. Deforming Twist Spun 2-Bridge Knots of Genus One

By Taizo Kanenobu
Department of Mathematics, Kyushu University
(Communicated by Kôsaku Yosida, M. J. A., April 12, 1988)

We work in the $P L$ category. Zeeman's k-twist spin of an n-knot K, $k \neq 0$, is a fibered ($n+1$)-knot with fiber punctured k-fold branched cyclic cover of S^{n+2} branched over K [11]. Combining an untwisted deformation of an n-knot with k-twist spinning, $k \neq 0$, Litherland [4] constructed a new fibered ($n+1$)-knot; especially he identified the fiber of an l-roll k-twist spun knot. A 2-bridge knot of genus one $C(2 m, 2 n)$ has a period q of order 2, that is, rotation q of S^{3} with period 2 and axis J which leaves $C(2 m, 2 n)$ invariant. See Fig. 1, where m (resp. n) denotes the number of half twists, right handed if $m>0$ (resp. $n<0$), left if $m<0$ (resp. $n>0$); $C(4,6)$ in illustration. Making use of this period, we can construct a deforming twist spun 2-knot. We visualize the fiber (theorem), using the surgery technique by Rolfsen [8]. From this we have:

Corollary. There exists a fibered 2 -knot in S^{4} whose fiber is a punctured Seifert manifold with invariant ($b ;(2,1),(2,1),(2,1)), b=1,4$, that is, a prism manifold [6] with fundamental group $Q \times \boldsymbol{Z}_{|2 b+3|}$, where Q is the quaternion group of order 8.

Fig. 1

Hillman [1] determined all the 2-knot groups with finite commutator subgroups. Yoshikawa [10] realized them as twist spun knots in S^{4} except in the case when the commutator subgroup is $Q \times \boldsymbol{Z}_{m}, m(>1)$ is odd, when any twist spun knot cannot realize [2, Chapter 5] and Yoshikawa only got a fibered 2 -knot in a homotopy 4 -sphere. Morichi [5] realized an embedding of every punctured prism manifold in S^{4}. Plotnick and Suciu [7] determined all the fibered 2-knots in a homotopy 4 -sphere with fiber a punctured spherical space form ; it is not known weather all of them, including the above case, can be realized as fibered 2-knots in S^{4}.

Construction of a fibered 2 -knot. The circle S^{1} is taken to be the quotient space either

$$
R / \theta \sim \theta+1 \quad \text { for all } \theta \in R \text {, or } I / 0 \sim 1
$$

