(1)

98. On Unit Groups of Algebraic Number Fields

By Shin-ichi KATAYAMA

College of General Education, University of Tokushima

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 14, 1988)

1. Let K be a Galois extension of an algebraic number field k and U_{κ} the unit group of the idele group K_{A}^{\times} . O_{κ}^{\times} denotes the global unit group of K. $N_{\kappa/k}$ denotes the norm map from K_{A}^{\times} to k_{A}^{\times} .

In our paper [2], we have proved the following isomorphism

$$(*) \qquad (N_{K/k}^{-1}(1) \cap (U_K \cdot K^{\times})) / (N_{K/k}^{-1}(1) \cap U_K) (N_{K/k}^{-1}(1) \cap K^{\times}) \\ \cong (O_k^{\times} \cap N_{K/k} K^{\times}) / N_{K/k} O_K^{\times}.$$

In this paper, this result will be generalized by using the cohomological language.

2. First, we consider the following commutative diagram of cochain complexes with exact rows and columns.

Let us denote the connecting homomorphisms derived from (1) by

$$\begin{split} \delta_1 &: H^r(A_3) \longrightarrow H^{r+1}(A_1), \\ \delta_2 &: H^r(A_3) \longrightarrow H^{r+1}(B_1), \\ \gamma_1 &: H^r(C_1) \longrightarrow H^{r+1}(A_1), \\ \gamma_2 &: H^r(C_1) \longrightarrow H^{r+1}(A_2) \qquad (r \in \mathbb{Z}). \end{split}$$

We denote the homomorphism $H^r(A_1) \rightarrow H^r(A_2)$ induced from a_1 by the same symbol a_1 . The homomorphisms a_2 , b_1 , b_2 , φ_1 , φ_2 , ψ_1 , ψ_2 are defined in a similar way. Then, by the elementary diagram chasing, we have the following lemma.

Lemma. With the notation as above, we have the following isomorphisms

(2) $H^{r}(B_{2})/(\operatorname{Im} \varphi_{2} + \operatorname{Im} b_{1}) \cong \operatorname{Ker} a_{1} \cap \operatorname{Ker} \varphi_{1} \subset H^{r+1}(A_{1}),$

(3)
$$H^{r}(A_{1})/(\operatorname{Im} \delta_{1} + \operatorname{Im} \gamma_{1}) \cong \operatorname{Ker} b_{2} \cap \operatorname{Ker} \psi_{2} \subset H^{r}(B_{2}).$$

Proof. Proof of (2). Since $\operatorname{Im} b_1 = \operatorname{Ker} b_2$, we have $H^r(B_2)/(\operatorname{Im} \varphi_2 + \operatorname{Im} b_1) \cong b_2(H^r(B_2))/b_2\varphi_2(H^r(A_2)).$