35. A Note on the Normal Generation of Ample Line Bundles on Abelian Varieties

By Akira Ohbuchi
Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo

(Communicated by Kunihiko Kodaira, m. J. A., April 12, 1988)

Let k be an algebraically closed field, let A be an abelian variety defined over k and let L be an ample line bundle on A. It is well known that $L^{\otimes n}$ is normally generated if $n \geqq 3$ (see Koizumi [2] or Sekiguchi [5], [6]). But $L^{\otimes^{2}}$ is not normally generated in general because $L^{\otimes^{2}}$ is not very ample in general. For the very ampleness of $L^{\otimes^{2}}$, the following result is obtained (see Ohbuchi [3]).

Theorem A. $L^{\otimes 2}$ is not very ample if and only if (A, L) is isomorphic to $\left(A_{1} \times A_{2}, \mathcal{O}\left(\Theta_{1} \times A_{2}+A_{1} \times D_{2}\right)\right)$ where A_{1} and A_{2} are abelian varieties with $\operatorname{dim}\left(A_{1}\right)>0$ and Θ_{1} is a theta divisor.

Our purpose is to give a condition for the normal generation of $L^{\otimes^{2}}$. The result is as follows:

Theorem. If char $(k) \neq 2$ and L is a symmetric ample line bundle, then $L^{\otimes_{2}}$ is normally generated if and only if the origine 0 of A is not contained in $\mathrm{Bs}\left|L \otimes P_{\alpha}\right|$ for any $\alpha \in \hat{A}_{2}=\{\alpha \in \hat{A} ; 2 \alpha=0\}$ where \hat{A} is the dual abelian variety of A, P is the Poincaré bundle on $A \times \hat{A}, P_{\alpha}=P_{\mid A \times\{\alpha\}}$ for $\alpha \in \hat{A}$ and $\mathrm{Bs}\left|L \otimes P_{\alpha}\right|$ is the set of all base points of $L \otimes P_{\alpha}$.

To prove this theorem, we need three lemmas.
Lemma 1. If char $(k) \neq 2$ and L is a symmetric ample line bundle, then $\xi^{*}\left(p_{1}^{*} L \otimes p_{2}^{*} L\right) \simeq p_{1}^{*}\left(L^{\otimes^{2}}\right) \otimes p_{2}^{*}\left(L^{\otimes^{2}}\right)$ where $p_{i}: A \times A \rightarrow A$ is the i-th projection $(i=1,2)$ and $\xi: A \times A \rightarrow A \times A$ is defined by $\xi(x, y)=(x+y, x-y)$ for all S-valued points x, y where S is a k-scheme.

Proof. As $\xi^{*}\left(p_{1}^{*} L \otimes p_{2}^{*} L\right)_{\mid A \times\{y\}} \simeq T_{y}^{*} L \otimes T_{-y}^{*} L \simeq L^{\otimes^{2}}$ for any closed point $y \in A$, therefore $\xi^{*}\left(p_{1}^{*} L \otimes p_{2}^{*} L\right) \otimes\left(p_{1}^{*}\left(L^{\otimes^{2}}\right)\right)^{-1} \simeq p_{2}^{*} M$ for some line bundle M on A by See-Saw theorem. Moreover $\xi^{*}\left(p_{1}^{*} L \otimes p_{2}^{*} L\right)_{\mid\{0 \mid \times A} \simeq L \otimes\left(-1_{A}\right) * L \simeq L^{\otimes 2}$, hence $M \simeq L^{\otimes^{2}}$.

Lemma 2. If char $(k) \neq 2$ and L is an ample line bundle, then

$$
\sum_{\alpha \in \hat{A}_{2}} \Gamma\left(A, L \otimes P_{\alpha}\right) \xrightarrow{2_{A}^{*}} \Gamma\left(A, 2_{A}^{*} L\right)
$$

is an isomorphism.
Proof. This is a well known fact (see Mumford [1]).
Lemma 3. If L is an ample line bundle, then

$$
\Gamma\left(A, L^{\otimes n}\right) \otimes \Gamma\left(A, L^{\otimes m}\right) \longrightarrow \Gamma\left(A, L^{\otimes(n+m)}\right)
$$

is surjective if $n \geqq 2, m \geqq 3$.
Proof. See Koizumi [2] or Sekiguchi [5], [6].

