35. A Note on the Normal Generation of Ample Line Bundles on Abelian Varieties

By Akira Ohbuchi

Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo

(Communicated by Kunihiko Kodaira, M. J. A., April 12, 1988)

Let k be an algebraically closed field, let A be an abelian variety defined over k and let L be an ample line bundle on A. It is well known that $L^{\otimes n}$ is normally generated if $n \geq 3$ (see Koizumi [2] or Sekiguchi [5], [6]). But $L^{\otimes 2}$ is not normally generated in general because $L^{\otimes 2}$ is not very ample in general. For the very ampleness of $L^{\otimes 2}$, the following result is obtained (see Ohbuchi [3]).

Theorem A. $L^{\otimes 2}$ is not very ample if and only if (A, L) is isomorphic to $(A_1 \times A_2, \mathcal{O}(\Theta_1 \times A_2 + A_1 \times D_2))$ where A_1 and A_2 are abelian varieties with $\dim(A_1) > 0$ and Θ_1 is a theta divisor.

Our purpose is to give a condition for the normal generation of $L^{\otimes 2}$. The result is as follows:

Theorem. If char $(k) \neq 2$ and L is a symmetric ample line bundle, then $L^{\otimes 2}$ is normally generated if and only if the origine 0 of A is not contained in Bs $|L \otimes P_{\alpha}|$ for any $\alpha \in \hat{A}_2 = \{\alpha \in \hat{A} : 2\alpha = 0\}$ where \hat{A} is the dual abelian variety of A, P is the Poincaré bundle on $A \times \hat{A}$, $P_{\alpha} = P_{|A \times \{\alpha\}}$ for $\alpha \in \hat{A}$ and Bs $|L \otimes P_{\alpha}|$ is the set of all base points of $L \otimes P_{\alpha}$.

To prove this theorem, we need three lemmas.

Lemma 1. If char $(k) \neq 2$ and L is a symmetric ample line bundle, then $\xi^*(p_1^*L \otimes p_2^*L) \simeq p_1^*(L^{\otimes 2}) \otimes p_2^*(L^{\otimes 2})$ where $p_i: A \times A \to A$ is the i-th projection (i=1,2) and $\xi: A \times A \to A \times A$ is defined by $\xi(x,y) = (x+y,x-y)$ for all S-valued points x,y where S is a k-scheme.

Proof. As $\xi^*(p_1^*L\otimes p_2^*L)_{|A\times\{y\}}\simeq T_y^*L\otimes T_{-y}^*L\simeq L^{\otimes 2}$ for any closed point $y\in A$, therefore $\xi^*(p_1^*L\otimes p_2^*L)\otimes (p_1^*(L^{\otimes 2}))^{-1}\simeq p_2^*M$ for some line bundle M on A by See-Saw theorem. Moreover $\xi^*(p_1^*L\otimes p_2^*L)_{|\{0\}\times A}\simeq L\otimes (-1_A)^*L\simeq L^{\otimes 2}$, hence $M\simeq L^{\otimes 2}$.

Lemma 2. If char $(k) \neq 2$ and L is an ample line bundle, then

$$\sum_{\scriptscriptstyle{\alpha\in\hat{A}_2}} \varGamma(A,L{\otimes}P_{\scriptscriptstyle{\alpha}}) \xrightarrow{2_{\scriptscriptstyle{A}}^*} \varGamma(A,2_{\scriptscriptstyle{A}}^*L)$$

is an isomorphism.

Proof. This is a well known fact (see Mumford [1]).

Lemma 3. If L is an ample line bundle, then

$$\Gamma(A, L^{\otimes n}) \otimes \Gamma(A, L^{\otimes m}) \longrightarrow \Gamma(A, L^{\otimes (n+m)})$$

is surjective if $n \ge 2$, $m \ge 3$.

Proof. See Koizumi [2] or Sekiguchi [5], [6].