# 12. A Proof of Existence of The Stable Jacobi Tensor 

By Nobuhiro Innami<br>Department of Mathematics, Nagoya Institute of Technology<br>(Communicated by Kunihiko Kodarra, M. J. A., Feb. 12, 1987)

0. Let $M^{n}$ be a complete Riemannian manifold without conjugate points and $R$ the curvature tensor of $M$. Let $\gamma:(-\infty, \infty) \rightarrow M$ be a geodesic and let $E_{1}, \cdots, E_{n}$ be a parallel orthonormal frame field along $\gamma$ with $E_{n}(t)$ $=\dot{\gamma}(t)$. We consider the $(n-1) \times(n-1)$ matrix differential equation

$$
\begin{equation*}
D^{\prime \prime}(t)+R(t) D(t)=0, \tag{J}
\end{equation*}
$$

where $R(t)_{i j}=\left\langle R\left(E_{i}, E_{n}\right) E_{n}, E_{j}\right\rangle(t)$ for any $t \in(-\infty, \infty)$. If $D(t),-\infty<t$ $<\infty$, is a solution of ( J ) and $x$ is a parallel vector field along $\gamma$, then $D(t) x(t)$, $-\infty<t<\infty$, is a Jacobi field along $\gamma$. The following theorems play important roles in the study of manifolds without conjugate points.

Theorem 1. Let $M$ be a complete simply connected Riemannian manifold without conjugate points and $\gamma:(-\infty, \infty) \rightarrow M$ a geodesic. If $D_{s}(t)$, $-\infty<t<\infty$, are the solution of (J) with $D_{s}(0)=I, D_{s}(s)=0$ for all $s>0$, then the sequence $D_{s}$ converges to a Jacobi tensor $D$ along $\gamma$ with $D(0)=I$, $\operatorname{det} D(t)$ $\neq 0$ for any $t \in(-\infty, \infty)$ as $s \rightarrow \infty$.

Theorem 2. Let $M$ and $\gamma$ be as above. Then, there is a symmetric matrix field $A$ along $\gamma$ which satisfies the Ricatti equation, namely $A^{\prime}(t)+$ $A(t)^{2}+R(t)=0$ for any $t \in(-\infty, \infty)$.

The theorems were originally proved by Hopf [5] and Green [4] under a more general setting. The proof was explained by Eberlein [1], Eschenburg-O'Sullivan [2] and Goto [3]. The purpose of the present note is to give a geometrical and visual proof which is simpler to some readers. The different point from their proof is that we prove Theorem 2 before Theorem 1. Theorem 1 is an immediate consequence from Theorem 2.

1. Since $M$ is simply connected, all geodesics $\alpha:(-\infty, \infty) \rightarrow M$ are minimizing and $M$ is diffeomorphic to $E^{n}$. In particular, all spheres are of class $C^{\infty}$.

Let $\gamma$ and $D_{s}$ be as in Theorem 1. $\quad D_{s}(t),-\infty<t<\infty$, is obtained by the following way: Let $S(\gamma(0), \gamma(s)$ ) be the sphere with center $\gamma(s)$ through $\gamma(0)$ and let $v$ be the unit normal vector field on $S(\gamma(0), \gamma(s))$ pointing $\gamma(s)$. We consider a map $\phi: S(\gamma(0), \gamma(s)) \times(-\infty, \infty) \rightarrow M$ given by $\phi(q, t)=\exp t v(q)$. We denote by $\phi_{t}$ the map $q \rightarrow \phi(q, t)$. If $c:(-\varepsilon, \varepsilon) \rightarrow S(\gamma(0), \gamma(s)), c(0)=\gamma(0)$, is a curve, then $\phi \circ(c \times i d):(-\varepsilon, \varepsilon) \times(-\infty, \infty) \rightarrow M$ is a geodesic variation, and, thus, $\phi_{t *} x,-\infty<t<\infty$, is a Jacobi field along $\gamma$ for any $x \in T_{\gamma(0)} S(\gamma(0)$, $\gamma(s)$ ). Hence,

$$
D_{s}(t)=\phi_{t *} \circ P_{t}^{-1}
$$

for any $t \in(-\infty, \infty)$, where $P_{t}: T_{\gamma(0)} M \rightarrow T_{\gamma(t)} M$ is the parallel translation along $\gamma$.

