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0. Let M" be a complete Riemannian manifold without conjugate
points and R the curvature tensor of M. Let 7 : (— o0, c0)—M be a geodesic
and let E,, - - -, E, be a parallel orthonormal frame field along 7 with E, (¢)
=7(t). We congider the (n—1) X (n—1) matrix differential equation
) D"®)+R(#)D(t)=0,
where R(t),=<(R(E, E)E,,E ) for any te(—o0, 00). If D(t), —oo<t
< o0, is a solution of (J) and « is a parallel vector field along 7, then D(¢)x(%),
— oo <t< o0, is a Jacobi field along 7. The following theorems play impor-
tant roles in the study of manifolds without conjugate points.

Theorem 1. Let M be a complete simply connected Riemannion mani-
fold without conjugate points and 7 :(— oo, c0)—M a geodesic. If D(t),
— o0 <t< o0, are the solution of (J) with D,(0)=1, D (s)=0 for all >0, then
the sequence D, converges to a Jacobt tensor D along ¥ with D(0)=1, det D(t)
+0 for any t € (— o0, c0) a8 §—>00,

Theorem 2. Let M and v be as above. Then, there is a symmetric
matriz field A along ¥ which satisfies the Ricatti equation, namely A’(t)+
AR +R(@t)=0 for any t € (— oo, o).

The theorems were originally proved by Hopf [5] and Green [4] under
a more general setting. The proof was explained by Eberlein [1],
Eschenburg-O’Sullivan [2] and Goto [3]. The purpose of the present note
is to give a geometrical and visual proof which is simpler to some readers.
The different point from their proof is that we prove Theorem 2 before
Theorem 1. Theorem 1 is an immediate consequence from Theorem 2.

1. Since M is simply connected, all geodesics «:(— o0, 0)—>M are
minimizing and M is diffeomorphic to E*. In particular, all spheres are
of class C~.

Let 7 and D, be as in Theorem 1. D,(%), — oo <t< oo, is obtained by
the following way : Let S(7(0),7(s)) be the sphere with center 7(s) through
7(0) and let v be the unit normal vector field on S(r(0),7(s)) pointing 7(s).
We consider a map ¢ : S (0), 7(8)) X (— o0, c0)—M given by ¢(q, t)=exp tv(q).
We denote by ¢, the map q—¢(q,t). If ¢:(—e, )—S(0),7(s)), ¢(0)=7(0),
is a curve, then ¢o(cXid): (—e, &) X(— 00, c0)—>M is a geodesic variation,
and, thus, ¢,x, — oo <t<oo, is a Jacobi field along 7 for any « € T,,S(7(0),

7(s)). Hence,
D,(t)=¢.x o P;*

for any te(— o0, o0), where P,:T,,M—T,,M is the parallel translation
along 7.



