12. A Proof of Existence of The Stable Jacobi Tensor

By Nobuhiro INNAMI

Department of Mathematics, Nagoya Institute of Technology

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 12, 1987)

0. Let M^n be a complete Riemannian manifold without conjugate points and R the curvature tensor of M. Let $\gamma: (-\infty, \infty) \to M$ be a geodesic and let E_1, \dots, E_n be a parallel orthonormal frame field along γ with $E_n(t)$ $=\dot{\gamma}(t)$. We consider the $(n-1) \times (n-1)$ matrix differential equation (J) D''(t) + R(t)D(t) = 0, where $R(t)_{ij} = \langle R(E_i, E_n)E_n, E_j \rangle(t)$ for any $t \in (-\infty, \infty)$. If $D(t), -\infty < t < \infty$, is a solution of (J) and x is a parallel vector field along γ , then D(t)x(t), $-\infty < t < \infty$, is a Jacobi field along γ . The following theorems play important roles in the study of manifolds without conjugate points.

Theorem 1. Let M be a complete simply connected Riemannian manifold without conjugate points and $\gamma: (-\infty, \infty) \rightarrow M$ a geodesic. If $D_s(t)$, $-\infty < t < \infty$, are the solution of (J) with $D_s(0) = I$, $D_s(s) = 0$ for all s > 0, then the sequence D_s converges to a Jacobi tensor D along γ with D(0) = I, $\det D(t) \neq 0$ for any $t \in (-\infty, \infty)$ as $s \rightarrow \infty$.

Theorem 2. Let M and $\tilde{\tau}$ be as above. Then, there is a symmetric matrix field A along $\tilde{\tau}$ which satisfies the Ricatti equation, namely $A'(t) + A(t)^2 + R(t) = 0$ for any $t \in (-\infty, \infty)$.

The theorems were originally proved by Hopf [5] and Green [4] under a more general setting. The proof was explained by Eberlein [1], Eschenburg-O'Sullivan [2] and Goto [3]. The purpose of the present note is to give a geometrical and visual proof which is simpler to some readers. The different point from their proof is that we prove Theorem 2 before Theorem 1. Theorem 1 is an immediate consequence from Theorem 2.

1. Since *M* is simply connected, all geodesics $\alpha: (-\infty, \infty) \rightarrow M$ are minimizing and *M* is diffeomorphic to E^n . In particular, all spheres are of class C^{∞} .

Let γ and D_s be as in Theorem 1. $D_s(t), -\infty < t < \infty$, is obtained by the following way: Let $S(\gamma(0), \gamma(s))$ be the sphere with center $\gamma(s)$ through $\gamma(0)$ and let v be the unit normal vector field on $S(\gamma(0), \gamma(s))$ pointing $\gamma(s)$. We consider a map $\phi : S(\gamma(0), \gamma(s)) \times (-\infty, \infty) \to M$ given by $\phi(q, t) = \exp tv(q)$. We denote by ϕ_t the map $q \to \phi(q, t)$. If $c : (-\varepsilon, \varepsilon) \to S(\gamma(0), \gamma(s)), c(0) = \gamma(0)$, is a curve, then $\phi \circ (c \times id) : (-\varepsilon, \varepsilon) \times (-\infty, \infty) \to M$ is a geodesic variation, and, thus, $\phi_{t*}x, -\infty < t < \infty$, is a Jacobi field along γ for any $x \in T_{\gamma(0)}S(\gamma(0), \gamma(s))$. Hence,

$$D_s(t) = \phi_{t*} \circ P_t^{-1}$$

for any $t \in (-\infty, \infty)$, where $P_t: T_{\tau(0)}M \to T_{\tau(t)}M$ is the parallel translation along τ .