90. Graphs with Given Countable Infinite Group

By Mitsuo Yoshizawa
Department of Mathematics, Josai University
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 12, 1987)

§1. Introduction. In this note we shall prove the following
Theorem. Let Δ be any graph which is a constant link of a finite graph and which has at least one isolated vertex and at least three vertices. Then for any countable group G there are infinitely many connected graphs Γ with constant link Δ and Aut $\Gamma \cong G$.

Since $n K_{1}$ is the constant link of $K_{n, n}$, we have the following
Corollary. For any countable group G and any integer $n \geqq 3$ there are infinitely many connected n-regular graphs Γ with Aut $\Gamma \cong G$.

The case $n=3$ and with finite group G of this corollary was proved by Frucht [1] and this result was extended to general $n \geqq 3$ by Sabidussi [2]. The case with finite group G of our theorem was proved by Vogler [4]. Our proof is an extension of [4]. We shall use the same notations as in [4].
§ 2. Proof of Theorem. First we refer to the following lemma without proof, whose proof is similar to that in [4; Theorem 1].

Lemma 1. Let G be a countable group, Δ a constant link of a finite graph with at least three vertices and at least one isolated vertex. If for each $k=3,4,5$ there are infinitely many connected k-regular prime graphs \prod_{k} with Aut $\prod_{k} \cong G$ and a stable k-coloring, then there are infinitely many connected graphs Γ with constant link Δ and Aut $\Gamma \cong G$.

Thus it is sufficient to prove the next lemma to prove our theorem.
Lemma 2. Let G be a countable group. Then for each $k=3,4,5$ there are infinitely many connected k-regular prime graphs \prod_{k} with Aut $\prod_{k} \cong G$ and a stable k-coloring.

Proof. First we show that for each $k=3,4,5$ there is a connected k-regular prime graph Γ_{k} with Aut $\Gamma_{k} \cong G$ and a stable k-coloring. If G is generated by a finite number of its elements, we see the existence of such a graph Γ_{k} for each $k=3,4,5$ by graphs similarly constructed to those in [1; Theorem 4.1], [2; Theorem 3.7] and [4; Lemma 5]. So we assume for a while that G is not generated by any finite subset. Let $S=\left\{x_{i}: i \in N\right\}$ be an infinite subset of G satisfying $S \nexists 1$ and $\langle S\rangle=G$. Let us set $G_{i}=\left\langle x_{i}, x_{2}\right.$, $\left.\cdots, x_{i}\right\rangle$. Now for every integer $i \geqq 2$ if x_{i} is contained in G_{i-1}, we remove x_{i} from S. Consequently, $G=\langle S\rangle$ holds and there is no finite subset $\left\{s_{i}\right.$: $i=1,2, \cdots, t\}$ of S satisfying $s_{1}^{\varepsilon_{1}} s_{2}^{\varepsilon_{2}} \cdots s_{t}^{\varepsilon_{t}}=1$ with $\varepsilon_{j}= \pm 1$. Hereafter we set
$S=\left\{y_{i}: i \in N\right\}$. Let us define graphs Γ_{3}, Γ_{4} and Γ_{5} as follows:

$$
\begin{aligned}
& V\left(\Gamma_{3}\right)=V\left(\Gamma_{4}\right)=V\left(\Gamma_{5}\right)=\{(j, g): j \in N, g \in G\} \\
& E\left(\Gamma_{3}\right)=\{[(1, g),(2, g)],[(1, g),(3, \mathrm{~g})],[(1, g),(4, g)],[(2, g),(5, g)]
\end{aligned}
$$

