39. A Note on a Generalization of a q-series Transformation of Ramanujan

By H. M. Srivastava*)
Department of Mathematics, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
(Communicated by Kôsaku Yosida, M. J. A., May 12, 1987)

It is shown how readily a recent generalization of a q-series transformation of Srinivasa Ramanujan would follow as a limiting case of Heine's transformation for basic hypergeometric series. Several interesting consequences of this general result are also deduced.

For real or complex $q,|q|<1$, let

$$
\begin{equation*}
(\lambda ; q)_{\mu}=\prod_{j=0}^{\infty}\left(1-\lambda q^{j}\right) /\left(1-\lambda q^{\mu+\jmath}\right) \tag{1}
\end{equation*}
$$

for arbitrary λ and μ, so that

$$
(\lambda ; q)_{n}=\left\{\begin{array}{r}
1, \quad \text { if } n=0, \\
(1-\lambda)(1-\lambda q) \cdots\left(1-\lambda q^{n-1}\right), \quad \forall n \in\{1,2,3, \cdots\},
\end{array}\right.
$$

and

$$
\begin{equation*}
(\lambda ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-\lambda q^{j}\right) \tag{3}
\end{equation*}
$$

The q-series transformation

$$
\begin{equation*}
(-\mathrm{b} q ; q)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(-b q ; q)_{n}} \frac{\lambda^{n}}{(q ; q)_{n}}=\sum_{n=0}^{\infty} q^{(1 / 2) n(n+1)}\left(-\frac{\lambda}{b} ; q\right)_{n} \frac{b^{n}}{(q ; q)_{n}} \tag{4}
\end{equation*}
$$

is stated in Chapter 16 of the Second Notebook of Srinivasa Ramanujan [9, Vol. II, p. 194, Entry 9]. A special case of Ramanujan's identity (4) when $b=1$ was posed as an Advanced Problem by Carlitz [5, p. 440, Equation (1)] who, in fact, proved the general case (4) by using Euler's expansion for $(\lambda ; q)_{n}$ as a polynomial in λ (cf. [6, p. 917]). The identity (4) has received considerable attention in several subsequent works (see, for example, [1], [2], and [8]). In particular, in their excellent memoir [1, pp. 9-10] Adiga et al. have presented two interesting proofs of (4). It should be remarked in passing that one of their proofs using Heine's transformation [7, p. 306, Equation (79)] iteratively is essentially equivalent to the earlier proof by Andrews [2, p. 105] who deduced (4) as a limiting case of a result attributed to Rogers.

An interesting generalization of Ramanujan's q-series transformation (4) was given recently by Bhargava and Adiga in the form (cf. [4, p. 339, Equation (3)] ; see also [3, p. 14, Equation (4*)]):

[^0]
[^0]: *) This research was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant A-7353.

 1980 Mathematics Subject Classification (1985 Revision). Primary 33A30; Secondary $11 \mathrm{~B} 65,05 \mathrm{~A} 30$.

