12. Automorphism Groups of Real Algebraic Curves of Genus 3

By Emilio BUJALANCE,^{†)*)} José Javier ETAYO,^{†)**)} and José Manuel GAMBOA^{†)***)}

(Communicated by Heisuke HIRONAKA, M. J. A., Jan. 13, 1986)

In [3] we have obtained the full list of automorphism groups of real (irreducible) algebraic hyperelliptic curves of genus 3. Let C be such a curve defined on **R** and $C(\mathbf{R})$ its real part. The automorphism group of $C(\mathbf{R})$, i.e., the group of its birational transformations, is one of the following: $C_2, C_2 \times C_2, C_2 \times C_2, D_6$ and $C_2 \times D_4$, with the notation of [5]. Even more, if we denote by k the number of connected components of a non-singular model of $C(\mathbf{R})$, the following table recollects the automorphism groups according to the topological features of the curves:

Ta	ble	Ι

k	C_2	$C_2 imes C_2$	$C_2 \! imes \! C_2 \! imes \! C_2$	$D_{\scriptscriptstyle 6}$	$C_2 imes D_4$
4	*	*	*		*
2	*	*	*	*	*
1	*	*			
2	*	*	*		
3	*	*		*	
	k 4 2 1 2 3		$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

The sign * means the actual occurrence while no sign does non-occurrence.

In this note we extend this result to arbitrary real algebraic curves of genus 3. The technique is based upon the well-known functorial equivalence between real algebraic curves and bordered compact Klein surfaces (see [1]): Given a curve C of genus g, Alling and Greenleaf endow it with a structure of Klein surface, that is, a compact surface $X(C) = \{V \mid V \text{ is a valuation ring of } R(C), R \subset V\}$. Its boundary, consisting of those residually real valuation rings, is the non-singular model of C(R).

Now, a Klein surface X may be expressed as D/Γ , where D is the hyperbolic plane and Γ is a non-Euclidean crystallographic (NEC) group, i.e., a discrete subgroup of isometries of the hyperbolic plane with compact quotient. (See [6].)

Partially supported by "Comisión Asesora de Investigación Científica y Técnica" (2280-83).

^{*)} Dep. de Matemática Fundamental, Facultad de Ciencias, U.N.E.D., 28040 Madrid, Spain.

^{**)} Dep. de Geometría y Topología, Facultad de C. Matemáticas, Universidad Complutense, 28040 Madrid, Spain.

^{***)} Dep. de Algebra y Fundamentos, Facultad de C. Matemáticas, Universidad Complutense, 28040 Madrid, Spain.