113. On Triple L-functions

By Takakazu SATOH
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1986)

We extend the Garrett's result [3] on triple products to different weight case. Details are described in [5]. Let n be a positive integer and $\Gamma_{n}=$ $S p(n, Z)$. We denote by H_{n} the Siegel upper half space of degree n. Let $S_{k}\left(\Gamma_{1}\right)$ be the space of cuspforms of weight k and of degree one. We write Fourier expansion of $f \in S_{k}\left(\Gamma_{1}\right)$ as $f(z)=\sum_{n=1}^{\infty} a(n, f) e^{2 \pi i n z}$. If $f \in S_{k}\left(\Gamma_{1}\right)$ is a normalized Hecke eigenform and p is a prime, we define semi-simple $M_{p}(f) \in G L(2, C)$ (up to conjugate class) by $\operatorname{det}\left(1-t M_{p}(f)\right)=1-\alpha(p, f) t+$ $p^{k-1} t^{2}$. For normalized Hecke eigenforms f, g and h, define 'triple L function' $L(s ; f, g, h)$ by

$$
L(s ; f, g, h)=\prod_{p: \text { prime }} \operatorname{det}\left(1-p^{-s} M_{p}(f) \otimes M_{p}(g) \otimes M_{p}(h)\right)^{-1}
$$

For Siegel modular forms f_{1}, \cdots, f_{m} and a field K, we denote by $K\left(f_{1}, \cdots, f_{m}\right)$ the field generated by all the Fourier coefficients of f_{1}, \cdots, f_{m} over K. If f and g are C^{∞}-modular forms (of degree one), we put

$$
\langle f, g\rangle_{k}=\int_{\Gamma_{1} \backslash H_{1}} f(x+i y) \overline{g(x+i y)} y^{k-2} d x d y
$$

provided that it converges absolutely. For even integers $r \geq 0, k>4$ and $f \in S_{k+r}\left(\Gamma_{1}\right)$, we denote by $[f]_{r}$ the Klingen type Eisenstein series attached to f and of type $\operatorname{det}^{k} \otimes \mathrm{Sym}^{r}$ St, which is a Siegel modular form of degree two. (Precise definition is given later.)

Theorem A. Let k, l and m be even integers satisfying $k \geq l \geq m$ and $l+m-k>4$. Let $f \in S_{k}\left(\Gamma_{1}\right), g \in S_{l}\left(\Gamma_{1}\right)$ and $h \in S_{m}\left(\Gamma_{1}\right)$ be normalized Hecke eigenforms. Put
$\widetilde{L}(s ; f, g, h)=\Gamma_{\boldsymbol{c}}(s) \Gamma_{\boldsymbol{c}}(s-k+1) \Gamma_{\boldsymbol{c}}(s-l+1) \Gamma_{\boldsymbol{c}}(s-m+1) L(s ; f, g, h)$ where $\Gamma_{c}(s)=2(2 \pi)^{-s} \Gamma(s)$. Then $\tilde{L}(s ; f, g, h)$ meromorphically extends to the whole s-plane and satisfies the functional equation

$$
\tilde{L}(s ; f, g, h)=-\tilde{L}(k+l+m-2-s ; f, g, h)
$$

Moreover, we have

$$
\begin{equation*}
\pi^{5+k-3 l-3 m} L(l+m-2 ; f, g, h) /\left(\langle f, f\rangle_{k}\langle g, g\rangle_{l}\langle h, h\rangle_{m}\right) \tag{1}
\end{equation*}
$$

$$
\in \boldsymbol{Q}\left([f]_{2 k-l-m}, f, g, h\right)
$$

and, if $L((k+l+m) / 2-1 ; f, g, h)$ is finite,

$$
L\left(\frac{k+l+m}{2}-1 ; f, g, h\right)=0
$$

Corollary, Let $f \in S_{k}\left(\Gamma_{1}\right)$ be a normalized Hecke eigenform and $L_{3}(s, f)$ its third L-function. Put

$$
\tilde{L}_{3}(s, f)=\Gamma_{c}(s) \Gamma_{c}(s-k+1) L_{3}(s, f) .
$$

Then $\tilde{L}_{3}(s, f)$ satisfies the functional equation

