110. On a Closed Range Property of a Linear Differential Operator

By Takahiro KAWAI^{*)} and Yoshitsugu TAKEI^{**)}

(Communicated by Heisuke HIRONAKA, M. J. A., Dec. 12, 1986)

The purpose of this note is to prove the closed range property of a linear differential operator P acting on the space $\mathcal{A}(K)$ of real analytic functions on a compact subset K of \mathbb{R}^n under the condition which we call the uniform P-convexity of K. Kiro [6] has recently claimed a similar result, but his reasoning contains serious gaps. In connection with this fact, the first named author (T. K.) wants to replace the condition (1.2) in his announcement paper [4] by the condition (1) below. See Kawai [5] for details.

To state our result, let us first prepare some notations. Let $P(x, D_x)$ be a linear differential operator with (not necessarily real-valued) real analytic coefficients defined on an open neighborhood U of K. Let $p_m(x, \xi)$ denote the principal symbol of $P(x, D_x)$ and suppose that it has a form $q(x, \xi)^t$ for a positive integer l, where $q(x, \xi)$ is a real analytic function in (x, ξ) that is a homogeneous polynomial of ξ of degree r(=m/l). Then the set K is said to be uniformly P-convex if $K = \{x \in U; \psi(x) \leq 0\}$ holds for a real-valued real analytic function $\psi(x)$ which is defined on U satisfying the following condition (1) with some strictly positive constants A_0 and C:

(1) Setting $z = x + \sqrt{-1}y$ and $\zeta = \frac{1}{2} \operatorname{grad} \psi(x) - \sqrt{-1}Ay$, we find

$$\sum_{1 \leq j,k \leq n} \frac{1}{2} \frac{\partial^2 \psi(x)}{\partial x_j \partial x_k} q^{(j)}(z,\zeta) \overline{q^{(k)}(z,\zeta)} + \operatorname{Re}\left(\sum_{j=1}^n q_{(j)}(z,\zeta) \overline{q^{(j)}(z,\zeta)}\right) \\ - \sum_{i=1}^n |q_{(j)}(z,\zeta)|^2 / A \geq C(1+A|y|)^{2(r-1)}$$

for $A\!>\!A_{\scriptscriptstyle 0}$, on the condition that $q(z,\zeta)\!=\!0$ and $A\psi(x)\!+\!A^{\scriptscriptstyle 2}|y|^{\scriptscriptstyle 2}\!=\!1.$

Here, and in what follows, $q^{(j)}(z,\zeta)$ (resp., $q_{(j)}(z,\zeta)$) denotes $\partial q/\partial \zeta_j$ (resp., $\partial q/\partial z_j$).

Remark. It seems to be interesting that the uniform *P*-convexity is quite akin to the strong *P*-convexity which Hörmander [1] used to obtain a priori estimates of solutions.

Now, our result is the following

Theorem. Let K be a compact subset of \mathbb{R}^n and let $P(x, D_x)$ be a linear differential operator defined on an open neighborhood U of K. Suppose that K is uniformly P-convex. Then $P\mathcal{A}(K)$ is a closed subspace of $\mathcal{A}(K)$.

^{*)} Research Institute for Mathematical Sciences, Kyoto University.

^{***} Department of Mathematics, Faculty of Science, Kyoto University.