106. Large Time Behavior of a Solution of a Parabolic Equation

By Kunio NISHIOKA Department of Mathematics, Tokyo Metropolitan University (Communicated by Kôsaku YosiDA, M. J. A., Dec. 12, 1986)

In this paper, we shall prove that a solution of the following Cauchy problem converges to a constant as $t \rightarrow \infty$.

(1) $\partial_t u = Au + \sum_{|\alpha|=2q} B_{\alpha}(t, x) \partial^{\alpha} u, \quad t > 0, \quad x \in \mathbb{R}^d; \quad u(0, x) = u_0(x),$ where

$$A\!\equiv\!(-1)^{q-1}
ho\sum_{k=1}^{d}rac{\partial^{2q}}{\partial x_{k}^{2q}}$$

with a natural number q and a complex number ρ such that $\operatorname{Re} \rho > 0$, $B_a(t, x)$'s are in a class $\mathcal{F}^0(\mathbb{R}^+, \mathbb{R}^d)$ and "smaller" than $\operatorname{Re} \rho$, and $u_0(x)$ is in a class $\mathcal{F}^0(\mathbb{R}^d)$.

In case of the second order uniformly parabolic equation of the divergence structure, i.e. $\partial_t u = \sum_{j,k=1}^d \partial/\partial x_j (A_{jk}(t,x)\partial u/\partial x_k)$, many authors studied the behavior of the solution as $t \to \infty$ with the order of the convergence (for example see [1, 2]). However their proofs can not be applied to (1), and also in our case u_0 is not necessarily a function in $L_1(\mathbf{R}^d)$. Hence our assertion is proved based on the representation of the solution by a *Girsanov type formula* established in [3, 4].

1. For multi index α and $x \in \mathbf{R}^d$, we put

$$x^{\alpha} \equiv \prod_{k=1}^{d} x_k^{\alpha_k}$$
 and $\partial^{\alpha} \equiv \prod_{k=1}^{d} \left(\frac{\partial}{\partial x_k} \right)^{\alpha_k}$.

Give a non-negative number κ . $\mathcal{M}^{\epsilon}(\mathbf{R}^{d})$ is a Banach space consisting of all complex valued measures $\mu(d\xi)$ on \mathbf{R}^{d} with

$$\|\mu\|_{\epsilon} \equiv \int (1+|\xi|)^{\epsilon} |\mu| (d\xi) < \infty,$$

and $\mathcal{P}^{\epsilon}(\mathbf{R}^{d})$ is a Banach space of all Fourier transforms of $\mathcal{M}^{\epsilon}(\mathbf{R}^{d})$, i.e.

$$f(x) = \int \exp{\{i\xi \cdot x\}} \mu_f(d\xi), \qquad \mu_f \in \mathcal{M}^{\epsilon}(\mathbf{R}^d),$$

and we define as $||f||_{\epsilon} \equiv ||\mu_{f}||_{\epsilon}$. $\mathcal{P}^{0}(\mathbf{R}^{d})$ is a subset of uniformly continuous and bounded functions, $\sup_{x} |f(x)| \leq ||f||_{0}$, and the Schwartz class, $\sin \eta \cdot x$, constants, etc. are contained in $\mathcal{P}^{\epsilon}(\mathbf{R}^{d})$ for any $\kappa \geq 0$.

Put $\mathbf{R}^+ \equiv [0, \infty)$, and $\mathcal{M}^{\epsilon}(\mathbf{R}^+, \mathbf{R}^d)$ denotes a set of all complex valued measures $\mu(t, d\xi)$, $t \in \mathbf{R}^+$, such that (i) $\mu \in \mathcal{M}^{\epsilon}(\mathbf{R}^d)$ for each $t \in \mathbf{R}^+$, and (ii) $\|\mu(t, \cdot) - \mu(s, \cdot)\|_{\epsilon} \to 0$ as $t \to s$ on \mathbf{R}^+ . $\mathcal{P}^{\epsilon}(\mathbf{R}^+, \mathbf{R}^d)$ is a Banach space consisting of all Fourier transforms of $\mathcal{M}^{\epsilon}(\mathbf{R}^+, \mathbf{R}^d)$, i.e.

$$g(t, x) = \int \exp \{i\xi \cdot x\} \mu_g(t, d\xi), \qquad \mu_g \in \mathcal{M}^{\epsilon}(\mathbf{R}^+, \mathbf{R}^d),$$

with a norm $\sup_{t\geq 0} \|\mu_q(t, \cdot)\|_{\ell}$. $\mu_q^* \in \mathcal{M}^{\ell}(\mathbb{R}^d)$ is said a dominating measure of