106. Large Time Behavior of a Solution of a Parabolic Equation

By Kunio Nishioka
Department of Mathematics, Tokyo Metropolitan University
(Communicated by Kôsaku Yosida, m. J. A., Dec. 12, 1986)

In this paper, we shall prove that a solution of the following Cauchy problem converges to a constant as $t \rightarrow \infty$.
(1) $\quad \partial_{t} u=A u+\sum_{|\alpha|=2 q} B_{\alpha}(t, x) \partial^{\alpha} u, \quad t>0, \quad x \in \boldsymbol{R}^{d} ; \quad u(0, x)=u_{0}(x)$, where

$$
A \equiv(-1)^{q-1} \rho \sum_{k=1}^{d} \frac{\partial^{2 q}}{\partial x_{k}^{q q}}
$$

with a natural number q and a complex number ρ such that $\operatorname{Re} \rho>0$, $B_{a}(t, x)$'s are in a class $\mathscr{F}^{0}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ and "smaller" than $\operatorname{Re} \rho$, and $u_{0}(x)$ is in a class $\mathscr{T}^{0}\left(\boldsymbol{R}^{d}\right)$.

In case of the second order uniformly parabolic equation of the divergence structure, i.e. $\partial_{t} u=\sum_{j, k=1}^{d} \partial / \partial x_{j}\left(A_{j k}(t, x) \partial u / \partial x_{k}\right)$, many authors studied the behavior of the solution as $t \rightarrow \infty$ with the order of the convergence (for example see [1,2]). However their proofs can not be applied to (1), and also in our case u_{0} is not necessarily a function in $L_{1}\left(\boldsymbol{R}^{d}\right)$. Hence our assertion is proved based on the representation of the solution by a Girsanov type formula established in [3,4].

1. For multi index α and $x \in \boldsymbol{R}^{d}$, we put

$$
x^{\alpha} \equiv \prod_{k=1}^{d} x_{k}^{\alpha_{k}} \quad \text { and } \quad \partial^{\alpha} \equiv \prod_{k=1}\left(\frac{\partial}{\partial x_{k}}\right)^{\alpha_{k}}
$$

Give a non-negative number $\kappa . \mathcal{M}^{\kappa}\left(\boldsymbol{R}^{d}\right)$ is a Banach space consisting of all complex valued measures $\mu(d \xi)$ on \boldsymbol{R}^{d} with

$$
\|\mu\|_{x} \equiv \int(1+|\xi|)^{x}|\mu|(d \xi)<\infty
$$

and $\mathscr{P}^{k}\left(\boldsymbol{R}^{d}\right)$ is a Banach space of all Fourier transforms of $\mathcal{M}^{k}\left(\boldsymbol{R}^{d}\right)$, i.e.

$$
f(x)=\int \exp \{i \xi \cdot x\} \mu_{f}(d \xi), \quad \mu_{f} \in \mathscr{M}^{*}\left(\boldsymbol{R}^{d}\right)
$$

and we define as $\|f\|_{k} \equiv\left\|\mu_{f}\right\|_{k} . \quad \mathscr{P}^{0}\left(\boldsymbol{R}^{a}\right)$ is a subset of uniformly continuous and bounded functions, $\sup _{x}|f(x)| \leqq\|f\|_{0}$, and the Schwartz class, $\sin \eta \cdot x$, constants, etc. are contained in $\mathscr{\Psi}^{x}\left(\boldsymbol{R}^{d}\right)$ for any $\kappa \geqq 0$.

Put $\boldsymbol{R}^{+} \equiv[0, \infty)$, and $\mathscr{M}^{c}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ denotes a set of all complex valued measures $\mu(t, d \xi), t \in \boldsymbol{R}^{+}$, such that (i) $\mu \in \mathcal{M}^{\kappa}\left(\boldsymbol{R}^{d}\right)$ for each $t \in \boldsymbol{R}^{+}$, and (ii) $\|\mu(t, \cdot)-\mu(s, \cdot)\|_{x} \rightarrow 0$ as $t \rightarrow s$ on $\boldsymbol{R}^{+} . \quad \mathcal{F}^{x}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$ is a Banach space consisting of all Fourier transforms of $\mathscr{M}^{k}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)$, i.e.

$$
g(t, x)=\int \exp \{i \xi \cdot x\} \mu_{g}(t, d \xi), \quad \mu_{g} \in \mathscr{M}^{\kappa}\left(\boldsymbol{R}^{+}, \boldsymbol{R}^{d}\right)
$$

with a norm $\sup _{t \geq 0}\left\|\mu_{g}(t, \cdot)\right\|_{k} \cdot \mu_{g}^{*} \in \mathscr{M}^{*}\left(\boldsymbol{R}^{a}\right)$ is said a dominating measure of

