# 9. The Number of Embeddings of Integral Quadratic Forms. II*) 

By Rick Miranda**) and David R. Morrison***)<br>(Communicated by Kunihiko Kodaira, m. J. A., Jan. 13, 1986)

This is a continuation of our previous note [5], to which we refer the reader for definitions and notation.

1. Introduction. Let $\phi: M \rightarrow L$ be a primitive embedding from a nondegenerate integral quadratic form $M$ into an indefinite unimodular integral quadratic form $L$. In [5] we showed that the number of equivalence classes of primitive embeddings from $M$ into $L$ coincides with a certain invariant $e(N)$ of the orthogonal complement $N$ of $M$ in $L$. (We also proved a similar statement for ( $\alpha, \beta$ )-equivalence classes and the invariant $e_{\alpha \beta}(N)$.) In this note, we give an effective procedure for calculating these invariants $e(N)$ and $e_{\alpha \beta}(N)$ when $N$ is indefinite with rank at least three. This extends some work of Nikulin [6], who gave sufficient conditions for $e(N)$ to be 1 (under the same hypotheses on $N$ ). The proofs, together with some applications to algebraic geometry, will be given elsewhere.
2. The structure of finite quadratic forms. A finite quadratic form is a finite abelian group $G$ together with a map $q: G \rightarrow \boldsymbol{Q} / \boldsymbol{Z}$ such that the induced map $b: G \times G \rightarrow \boldsymbol{Q} / \boldsymbol{Z}$ defined by $b(x, y)=q(x+y)-q(x)-q(y)$ is $\boldsymbol{Z}$ bilinear, and such that $q(n x)=n^{2} q(x)$ for all $n \in Z$ and $x \in G$. $G$ is called nondegenerate if the adjoint map $\operatorname{Ad} b: G \rightarrow \operatorname{Hom}(G, \boldsymbol{Q} / \boldsymbol{Z})$ of the associated bilinear form $b$ is injective.

We recall from Wall [8] and Durfee [2] the basic structure of a nondegenerate finite quadratic form $G$, using the notation of Brieskorn [1]. The Sylow decomposition $G=\oplus_{p} G_{p}$ is an orthogonal direct sum decomposition with respect to the form $q$; moreover, each Sylow subgroup $G_{p}$ admits an orthogonal direct sum decomposition into groups of ranks one and two of the following types:
(i) If $p \neq 2$ and $\varepsilon= \pm 1, w_{p, k}^{\varepsilon}$ denotes $Z / p^{k} Z$ with a generator $x$ such that the quadratic map is given by $q(x)=p^{-k} u(\bmod \boldsymbol{Z})$ for some $u \in \boldsymbol{Z}$ with $(u, p)=1$ and $\left(\frac{2 u}{p}\right)=\varepsilon$, where $(-)$ is the Legendre symbol.
(ii) If $\varepsilon \in(Z / 8 Z)^{\times}, w_{2, k}^{e}$ denotes $\boldsymbol{Z} / 2^{k} \boldsymbol{Z}$ with a generator $x$ such that $q(x)$ $=2^{-k-1} u(\bmod Z)$ for some $u \in Z$ with $u \equiv \varepsilon(\bmod 8)$.

[^0]
[^0]:    *) Research partially supported by the National Science Foundation and the Japan Society for the Promotion of Science.
    **) Department of Mathematics, Colorado State University.
    ***) Research Institute for Mathematical Sciences, Kyoto University and Department of Mathematics, Princeton University.

