9. The Number of Embeddings of Integral Quadratic Forms. II^{*)}

By Rick MIRANDA**) and David R. MORRISON***)

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 13, 1986)

This is a continuation of our previous note [5], to which we refer the reader for definitions and notation.

1. Introduction. Let $\phi: M \to L$ be a primitive embedding from a nondegenerate integral quadratic form M into an indefinite unimodular integral quadratic form L. In [5] we showed that the number of equivalence classes of primitive embeddings from M into L coincides with a certain invariant e(N) of the orthogonal complement N of M in L. (We also proved a similar statement for (α, β) -equivalence classes and the invariant $e_{\alpha\beta}(N)$.) In this note, we give an effective procedure for calculating these invariants e(N) and $e_{\alpha\beta}(N)$ when N is indefinite with rank at least three. This extends some work of Nikulin [6], who gave sufficient conditions for e(N) to be 1 (under the same hypotheses on N). The proofs, together with some applications to algebraic geometry, will be given elsewhere.

2. The structure of finite quadratic forms. A finite quadratic form is a finite abelian group G together with a map $q: G \rightarrow Q/Z$ such that the induced map $b: G \times G \rightarrow Q/Z$ defined by b(x, y) = q(x+y) - q(x) - q(y) is Zbilinear, and such that $q(nx) = n^2q(x)$ for all $n \in Z$ and $x \in G$. G is called nondegenerate if the adjoint map Ad $b: G \rightarrow \text{Hom}(G, Q/Z)$ of the associated bilinear form b is injective.

We recall from Wall [8] and Durfee [2] the basic structure of a nondegenerate finite quadratic form G, using the notation of Brieskorn [1]. The Sylow decomposition $G = \bigoplus_p G_p$ is an orthogonal direct sum decomposition with respect to the form q; moreover, each Sylow subgroup G_p admits an orthogonal direct sum decomposition into groups of ranks one and two of the following types :

- (i) If $p \neq 2$ and $\varepsilon = \pm 1$, $w_{p,k}^{\varepsilon}$ denotes $Z/p^{\varepsilon}Z$ with a generator x such that the quadratic map is given by $q(x) = p^{-k}u \pmod{Z}$ for some $u \in Z$ with (u, p) = 1 and $\left(\frac{2u}{p}\right) = \varepsilon$, where $\left(-\right)$ is the Legendre symbol.
- (ii) If $\varepsilon \in (Z/8Z)^{\times}$, $w_{2,k}^{\varepsilon}$ denotes $Z/2^{k}Z$ with a generator x such that $q(x) = 2^{-k-1}u \pmod{Z}$ for some $u \in Z$ with $u \equiv \varepsilon \pmod{8}$.

^{*&#}x27; Research partially supported by the National Science Foundation and the Japan Society for the Promotion of Science.

^{**)} Department of Mathematics, Colorado State University.

^{***&#}x27; Research Institute for Mathematical Sciences, Kyoto University and Department of Mathematics, Princeton University.