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1. Introduction. Let R be a commutative ring with identity and G
be a group. We denote the augmentation ideal of the group ring RG by
4x(G@). There are many problems and results relating to 4,(G) (cf. [6]).
In particular, it is an interesting problem to characterize the group rings
whose augmentation ideals satisfy some conditions. In this paper, we
treat the Lie property. We recall some definitions. Let S be a ring and
I be a two sided ideal of S. Then I and I are the ideals of S defined
inductively as follows, respectively.

=], [+ =[[ [™]S

Iv=], I =[I, I™]8,
where [M, N] is the additive subgroup of S generated by the elements of
the form [m, n]l=mn—nm with me M and ne N. We say that I is Lie
solvable (resp. Lie nilpotent) if I”=0 for some n (resp. [® =0 for some 7).
And I is called residually Lie solvable (resp. residually Lie nilpotent) if
M I™=0 (resp. () I™=0).

Parmenter-Passi-Sehgal [5] characterizes those groups G such that
4x(G@) is Lie nilpotent. The condition under which 4,(G) is residually Lie
nilpotent when k is a field is also known (cf. [6]). Further, Musson-Weiss
[4] gave the characterization of the groups G such that 4,(G) is residually
Lie nilpotent. In [7], the groups G such that RG is Lie solvable are
characterized (Lie solvability in our sense is called “strong” Lie solvability
in that book). On the other hand, we have 4$’(G)=RG™ and 4(G)=RG™
because [z, yl=[x—e(x)-1, y—e(y)-1] where z, ¥y € RG and ¢ is the augmen-
tation map. Thus those groups G such that 4;(G) is Lie solvable are
already characterized. Now the aim of this paper is to show the following

Theorem. Let G be a finite group. Then (M 4§7(G)=0 if and only if

G’ is a p-group for some prime p, where G’ is the commutator subgroup
of G.

2. DPreliminaries. The following is the key lemma to prove our
theorem. -

Lemma. Let R be a commutative ring with identity and G be a finite
group. Let K, L be the subgroups of G such that KLZN (K) and put
N=(K,L)y=<{k1"'kl|ke K,le LY. Then for any v € N and n=2, we have
(=) INF* %2 —1) € 45°(G).

Proof. We use the induction on n. Since



