7. Simple Vector Bundles over Symplectic Kähler Manifolds

By Shoshichi KOBAYASHI*)

Department of Mathematics, University of California, Berkeley

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 13, 1986)

1. Introduction. In a recent paper [5], Mukai has shown that the moduli space of simple sheaves on an abelian or K3 surface is smooth and has a holomorphic symplectic structure. We extend his result to higher dimensional manifolds by a differential geometric method.

A holomorphic symplectic structure on a complex manifold is given by a closed holomorphic 2-form ω which is non-degenerate in the sense that if $\omega(u, v) = 0$ for all tangent vectors v, then u = 0.

Let *M* be a compact Kähler manifold of dimension *n* and *E* a C^{∞} complex vector bundle of rank *r* over *M*. Let $A^{p,q}(E)$ be the space of $C^{\infty}(p, q)$ -forms over *M* with values in *E*. A semi-connection in *E* is a linear map $D'': A^{0,0}(E) \to A^{0,1}(E)$ such that

 $(1.1) D''(as) = d''a \cdot s + aD''s$

for all functions a on M and all sections s of E. Let $\mathcal{D}''(E)$ denote the space of semi-connections in E. Every semi-connection D'' extends uniquely to a linear map $D'': A^{p,q}(E) \rightarrow A^{p,q+1}(E)$ such that

(1.2) $D''(\alpha \wedge \sigma) = d''\alpha \wedge \sigma + (-1)^r \alpha \wedge D''\sigma$

for all r-forms α on M and all $\sigma \in A^{p,q}(E)$. In particular,

(1.3) $N(D'') := D'' \circ D'' : A^{\mathfrak{d},\mathfrak{d}}(E) \longrightarrow A^{\mathfrak{d},\mathfrak{d}}(E),$

and N(D'') may be considered as an element of $A^{0,2}(\operatorname{End}(E))$. A semiconnection D'' is called a holomorphic structure if N(D'')=0. Let $\mathcal{H}''(E)$ denote the set of holomorphic structures in E. If E is holomorphic, then $d'' \in \mathcal{H}''(E)$. Conversely, every $D'' \in \mathcal{H}''(E)$ comes from a unique holomorphic structure in E. The holomorphic vector bundle defined by D'' is denoted by $E^{D''}$. We call $E^{D''}$ simple if its endomorphisms are all of the form cI_E , where $c \in C$. Let

(1.4) $\operatorname{End}^{0}(E^{D''}) = \{ u \in \operatorname{End}(E^{D''}); \operatorname{Tr}(u) = 0 \}.$

Then $E^{D''}$ is simple if and only if $H^0(M, \operatorname{End}^0(E^{D''}))=0$. Let $\mathcal{S}''(E)$ denote the set of simple holomorphic structures D'' in E.

Let GL(E) be the group of C^{∞} automorphisms of the bundle E. Its Lie algebra $\mathfrak{gl}(E)$ is nothing but $A^{\mathfrak{g},\mathfrak{g}}(\operatorname{End}(E))$. The group GL(E) acts on $\mathcal{D}''(E)$ by

(1.5) $D'' = f^{-1} \circ D'' \circ f$ for $f \in GL(E)$, $D'' \in \mathcal{D}''(E)$. Then GL(E) leaves $\mathcal{H}''(E)$ and $\mathcal{S}''(E)$ invariant. With the C^{∞} topology, the moduli space $\mathcal{S}''(E)/GL(E)$ of simple holomorphic structures in E is a (possibly non-Hausdorff) complex analytic space. As was shown by Kim

^{*)} Partially supported by NSF Grant DMS 85-02362.