50. Initial-boundary Value Problem for Parabolic Equation in L^{1}

By Dong Gun Park
Department of Mathematics, Osaka University
(Communicated by Kôsaku Yosida, M. J. A., May 12, 1986)

Let Ω be a not necessarily bounded domain in R^{n} locally regular of class $C^{2 m}$ and uniformly regular of class C^{m} in the sense of F. E. Browder [4]. We consider the following parabolic initial-boundary value problem

$$
\begin{equation*}
\partial u / \partial t+A(x, t, D) u=f(x, t), \quad x \in \Omega, \quad 0<t \leqq T \tag{1}
\end{equation*}
$$

(2) $\quad B_{j}(x, t, D) u=0, \quad j=1, \cdots, m / 2, \quad x \in \partial \Omega, \quad 0<t \leqq T$,

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \quad x \in \Omega, \tag{3}
\end{equation*}
$$

in $L^{1}(\Omega)$. Here for each $t \in[0, T]$

$$
A(x, t, D) u=\sum_{|\alpha| \leqq m} a_{\alpha}(x, t) D^{\alpha}
$$

is a strongly elliptic linear differential operator of order m and

$$
B_{j}(x, t, D)=\sum_{|\beta| \leqq m j} b_{j \beta}(x, t) D^{\beta}, \quad j=1, \cdots, m / 2 \text {, }
$$

is a normal set of linear differential operators on $\partial \Omega$ of order less than m. Similar problem was discussed in [3], [9], [10] for equations with coefficients independent of t. In [3] with the aid of the theory of dual semigroups H . Amann showed that the associated elliptic operator generates an analytic semigroup in $L^{1}(\Omega)$ in case $m=2$.

Concerning the coefficients of $A(x, t, D)$ and $B_{j}(x, t, D)$ we assume the following regularity conditions:
(i) $a_{\alpha}(x, t),|\alpha|=m$, and their derivatives $\partial a_{\alpha}(x, t) / \partial t$ with respect to t are bounded and uniformly continuous in $\bar{\Omega} \times[0, T]$.
(ii) $a_{\alpha}(x, t),|\alpha|<m$, and their derivatives with respect to t are bounded and measurable, and continuous in t uniformly in $\bar{\Omega} \times[0, T]$.
(iii) The coefficients of $B_{j}(x, t, D)$ are extended to $\bar{\Omega} \times[0, T]$ so that $(\partial / \partial x)^{\gamma} b_{j \beta}(x, t),(\partial / \partial t)(\partial / \partial x)^{r} b_{j \beta}(x, t),|\beta| \leqq m_{j},|\gamma| \leqq m-m_{j}, j=1, \cdots, m / 2$, are bounded and uniformly continuous in $\bar{\Omega} \times[0, T]$.
(iv) The formally constructed adjoint boundary value problem ($A^{\prime}(x, t, D)$, $\left.\left\{B_{j}^{\prime}(x, t, D)\right\}_{j=1}^{m / 2}, \Omega\right)$ satisfies (i), (ii), (iii).

For the well-posedness of the problem (1)-(3) we assume that for each fixed $t \in[0, T]$ and $\theta \in[\pi / 2,3 \pi / 2]$

$$
(-1)^{m / 2} e^{i \theta}(\partial / \partial \tau)^{m}+A(x, t, D), \quad\left\{B_{j}(x, t, D)\right\}_{j=1}^{m / 2}
$$

satisfies the complementing condition in the cylindrical domain $\Omega \times(-\infty$, ∞) ([1], [2]).

The operator $A(t)$ is defined as follows:
The domain $D(A(t))$ is the totality of functions u satisfying
(i) $u \in W^{m-1, q}(\Omega)$ for each $q \in[1, n /(n-1))$,

