83. Some Results on Bessel Processes

By Junji TAKEUCHI

Department of Mathematics, Ochanomizu University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1985)

Let α be any real number. The Bessel process with index α is the diffusion process on the half line $\mathbf{R}^+ = [0, \infty)$, whose infinitesimal generator agrees with the differential operator

(1)
$$A = \frac{1}{2} \left(\frac{d^2}{dx^2} + \frac{\alpha - 1}{x} \cdot \frac{d}{dx} \right)$$

We note that the formula (1) for the generator implies that the boundary point 0 is

entrance not exitfor
$$\alpha \ge 2$$
entrance and exitfor $0 < \alpha < 2$ exit not entrancefor $\alpha \le 0$.

Thus for $\alpha \ge 2$ or $\alpha \le 0$, the processes are completely specified by the generator (1) above, but for $0 < \alpha < 2$ appropriate boundary condition must be imposed at the origin. In this note we deal with two types of the boundaries, i.e., reflecting barrier and absorbing barrier.

Following Yosida [4], we define the generalized potential operator V for the semigroup T_t by

(2)
$$Vf = \lim_{\lambda \downarrow 0} \int_0^\infty e^{-\lambda t} T_t f dt \qquad (\lambda > 0).$$

The representation of the potential operators associated with Bessel processes which is shown in [1], [2], will be stated here as

Proposition 1 (Reflecting case: Theorem 3 of Arakawa-Takeuchi [1]). Assume that $xf(x) \in L^1(\mathbb{R}^+)$ for $\alpha > 0$, $\alpha \neq 2$ and $xf(x) \log x \in L^1(\mathbb{R}^+)$ for $\alpha = 2$.

(i) For $0 < \alpha \leq 2$, a necessary and sufficient condition for $f \in \mathcal{D}(V)$ is

(3)
$$\int_0^\infty x^{\alpha-1} f(x) dx = 0.$$

If $f \in \mathcal{D}(V)$, then we have

(4)
$$Vf(x) = 2 \int_0^\infty U(x \vee y) y^{\alpha-1} f(y) dy$$

with the kernel

(5)
$$U(x) = \begin{cases} \frac{1}{\alpha - 2} \cdot \frac{1}{x^{\alpha - 2}} & \text{if } 0 < \alpha < 2 \text{ and } \alpha > 2\\ \log \frac{1}{x} & \text{if } \alpha = 2, \end{cases}$$

here $x \lor y$ denotes the greater of x and y.

(ii) For $\alpha > 2$, a function f such that $xf(x) \in L^1(\mathbb{R}^+)$ is contained in $\mathcal{D}(V)$, and Vf(x) is expressed by (4) with (5).

Proposition 2 (Absorbing case: Takeuchi [2]). For $-\infty < \alpha < 2$, a