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§1. Introduction. We study congruences between Siegel modu-
lar forms of degree two and different weight by using differential
operators. In the degree one case, such congruences were studied by
Serre [6] and Swinnerton-Dyer [8]. For the degree two case, we refer
to Kurokawa [2]. We denote by M, (I",) (resp. M3(I",), S,(I",)) the C-
vector space of holomorphic Siegel modular forms (resp. C*-modular
forms, holomorphic cusp forms) of degree n and weight k. For a
subring R of C, we denote by M,.(I",) the R-submodule of M ,(I",) con-
sisting of Siegel modular forms which have Fourier coefficients in R.
This paper is an abstract of [5].

§2. General results. We introduce certain differential opera-

tors. For a variable Z —_—(gl zs) on H, of Siegel upper half plane of
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degree two, we put
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and dY =dy,dy,dy,. For integers k and »=0, we define a differential
operator 4, acting on a C*-function f on H, by

0 f= Y| *+0m ’Cg‘Z"(lYlk—(l/Z)f)

and put 0,=104.,s-» - -0x+0:- We understand that 4% is the identity
operator. These differential operators were studied by Maass [4]. By
Harris [1, 1.5.31, 6; maps M3(I",) to Mg, (I",).

Next, we make a survey of a holomorphic projection. We set
V={YeM@, R)|Y>0}. For feM; ('), let fF(Z)=>,, (T, Y, f)q" be
its Fourier expansion, where q”"=exp (2ri Tr (T'Z)) and T runs over all
half-integral matrices of size two. We put

Pw(f)=TZ>:0P(w’ T, a(T7 Y’ f))qT,

where
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