93. On Certain Cubic Fields. VI

By Mutsuo Watabe
Department of Mathematics, Keio University
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1984)

1. The notations $E_{F}, E_{F}^{+}, \mathcal{O}_{F}$ for an algebraic number field F, D_{h} for a polynomial $h(x) \in Z[x]$ and $D_{F}(\alpha)$ for an algebraic number α in F have the same meanings as in [3].

In this note, we shall consider totally real cubic fields K with the properties:
(I) $\theta, \theta+1 \in E_{K}$
(II) $\mathcal{O}_{K}=Z+Z \theta+Z \theta^{2}$.

These fields will be called for convenience primitive with two consecutive units, in short $P-C$ fields. We shall prove

Theorem. In $P-C$ fields, we have $E_{K}=\langle \pm 1\rangle \times\langle\theta, \theta+1\rangle$.
2. Now we can distinguish four cases:
(1) $\theta,-1-\theta \in E_{K}^{+}$
(2) $\theta, 1+\theta \in E_{K}^{+}$
(3) $-\theta,-1-\theta \in E_{K}^{+}$
(4) $-\theta, 1+\theta \in E_{K}^{+}$

In the case (1), we have $N_{K / Q} \theta=1, N_{K / Q}(1+\theta)=-1$ which implies $\operatorname{Irr}(\theta ; \boldsymbol{Q})=x^{3}-m x^{2}-(m+3) x-1, m \in \boldsymbol{Z}$, and in the case (2), we have $N_{K / Q} \theta=1, N_{K / Q}(1+\theta)=1$ which implies $\operatorname{Irr}(\theta ; \boldsymbol{Q})=x^{3}-n x^{2}-(n+1) x-1$, $n \in Z$. The cases (3), (4) can be reduced to the case (2) by replacing θ respectively by $-1-\theta$ and $-(1+\theta)^{-1}$. Accordingly, we have to consider two kinds of fields ($P-C 1$) and ($P-C 2$), which are $P-C$ fields with properties (1) respectively (2).

Now we have
Theorem 1. Cubic field $K=\boldsymbol{Q}(\theta)$ with $\operatorname{Irr}(\theta ; \boldsymbol{Q})=f(x) \in \boldsymbol{Z}[x]$ is ($P-C 1$) field, if and only if $f(x)=x^{3}-m x^{2}-(m+3) x-1, m \in Z$ and $\sqrt{D_{f}}=m^{2}+3 m+9$ is square free.

In fact, (1) is equivalent with $\operatorname{Irr}(\theta ; \boldsymbol{Q})=f(x)=x^{3}-m x^{2}-(m+3) x$ -1 and in this case K is Galois and so totally real, and (II) holds if and only if $\sqrt{D_{f}}$ is square free.

Theorem 2. Cubic field $K=\boldsymbol{Q}(\theta)$ with $\operatorname{Irr}(\theta ; \boldsymbol{Q})=g(x) \in \boldsymbol{Z}[x]$ is (P-C2) field, if and only if $g(x)=x^{3}-n x^{2}-(n+1) x-1, n \in Z, D_{g}$ $=\left(n^{2}+n-3\right)^{2}-32>0$ is square free.

In fact, (2) is equivalent with $\operatorname{Irr}(\theta ; \boldsymbol{Q})=x^{3}-n x^{2}-(n+1) x-1$ and $D_{g}>0$ means that K is totally real, and (II) means that D_{g} is square free.
3. Proof of Theorem. We shall prove this theorem in two cases : ($P-C 1$) fields and ($P-C 2$) fields.

