93. On Certain Cubic Fields. VI

By Mutsuo WATABE

Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1984)

1. The notations E_F , E_F^+ , \mathcal{O}_F for an algebraic number field F, D_h for a polynomial $h(x) \in \mathbb{Z}[x]$ and $D_F(\alpha)$ for an algebraic number α in F have the same meanings as in [3].

In this note, we shall consider totally real cubic fields K with the properties:

(I) $\theta, \theta+1 \in E_{\kappa}$

(II) $\mathcal{O}_{K} = \mathbf{Z} + \mathbf{Z}\theta + \mathbf{Z}\theta^{2}$.

These fields will be called for convenience *primitive with two consecutive units*, in short *P-C* fields. We shall prove

Theorem. In *P*-*C* fields, we have $E_{\kappa} = \langle \pm 1 \rangle \times \langle \theta, \theta + 1 \rangle$.

2. Now we can distinguish four cases :

(1) θ , $-1-\theta \in E_K^+$ (2) θ , $1+\theta \in E_K^+$

 $(3) \quad -\theta, \quad -1-\theta \in E_K^+ \qquad (4) \quad -\theta, \quad 1+\theta \in E_K^+$

In the case (1), we have $N_{K/Q}\theta=1$, $N_{K/Q}(1+\theta)=-1$ which implies $\operatorname{Irr}(\theta; \mathbf{Q})=x^3-mx^2-(m+3)x-1$, $m \in \mathbb{Z}$, and in the case (2), we have $N_{K/Q}\theta=1$, $N_{K/Q}(1+\theta)=1$ which implies $\operatorname{Irr}(\theta; \mathbf{Q})=x^3-nx^2-(n+1)x-1$, $n \in \mathbb{Z}$. The cases (3), (4) can be reduced to the case (2) by replacing θ respectively by $-1-\theta$ and $-(1+\theta)^{-1}$. Accordingly, we have to consider two kinds of fields (*P*-*C*1) and (*P*-*C*2), which are *P*-*C* fields with properties (1) respectively (2).

Now we have

Theorem 1. Cubic field $K = Q(\theta)$ with $Irr(\theta; Q) = f(x) \in Z[x]$ is (P-C1) field, if and only if $f(x) = x^3 - mx^2 - (m+3)x - 1$, $m \in Z$ and $\sqrt{D_t} = m^2 + 3m + 9$ is square free.

In fact, (1) is equivalent with Irr $(\theta; Q) = f(x) = x^3 - mx^2 - (m+3)x$ -1 and in this case K is Galois and so totally real, and (II) holds if and only if $\sqrt{D_t}$ is square free.

Theorem 2. Cubic field $K = Q(\theta)$ with $Irr(\theta; Q) = g(x) \in Z[x]$ is (P-C2) field, if and only if $g(x) = x^3 - nx^2 - (n+1)x - 1$, $n \in Z$, $D_g = (n^2 + n - 3)^2 - 32 > 0$ is square free.

In fact, (2) is equivalent with Irr $(\theta; Q) = x^3 - nx^2 - (n+1)x - 1$ and $D_q > 0$ means that K is totally real, and (II) means that D_q is square free.

3. *Proof of Theorem*. We shall prove this theorem in two cases: (P-C1) fields and (P-C2) fields.