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1. The notations E, E, (C) for an algebraic number field F, D.
for a polynomial h(x)e Z[x] and D(c) for an algebraic number a in.
F have the same meanings as in [3].

In this note, we shall consider totally real cubic fields K with the
properties"

(I) 0, +1 eEx
(II) Ox=Z+ZO+ZO.

These fields will be called for convenience primitive with two eonseeu-.
tire units, in short P-C fields. We shall prove

Theorem. In P-C fields, we ha,ve E= (+ 1) (0, 0+1).
2. Now we can distinguish four eases"

(1) 0, --1--0eE (2) 0, l+0eE
(3) --0, --1--0eE (4) --0, l+0eE

In the case (1), we have N/aO=I, Nm(l+O)=--I which implies
Irr (0 Q) x-mx-(m+3)x- 1, m e z, and in the case (2), we have

Nx/aO=I, N/(1+0)=1 which implies Irr (0; Q)=x-nx-(n+l)x-1,
n e z. The cases (3), (4) can be reduced to the case (2) by replacing 0

respectively by -1-0 and -(1+0)-. Accordingly, we have to con-
sider two kinds of fields (P-C1) and (P-C2), which are P-C fields with
properties (1) respectively (2).

Now we have
Theorem 1. Cubic field K=Q(O) with Irr (0; Q)=f(x) e z[x] is

(P-C1) field, if and only if f(x)=x-mx-(m+3)x-1, m eZ and

/D m +3m+9 is square free.
In fact, (1) is equivalent with Irr (0; Q)=f(x)=x-mx-(m+3)x

-1 and in this case K is Galois and so totally real, and (II) holds if
and only if /D is square free.

Theorem 2. Cubic field K=Q(O) with Irr (0; Q)=g(x) e z[x] is

(P-C2) field, if and only if g(x) x--nx:-(n + 1)x--1, n e Z, D
(n +n-- 3Y-- 32>0 is square free.

In fact, (2) is equivalent with Irr (0; Q)=x-nx-(n+l)x-1 and
Dq>0 means hat K is totally real, and (II) means that D is square
free.

3. Proof o/Theorem. We shall prove this theorem in two cases"

(P-C1) fields and (P-C2) fields.


