63. On the Spaces of Self Homotopy Equivalences of Certain CW Complexes

By Tsuneyo Yamanoshita
Department of Mathematics, Musashi Institute of Technology
(Communicated by Shokichi Iyanaga, m. J. A., June 12, 1984)

1. Introduction. Let X be a connected $C W$ complex with base point which is a vertex of X. And let $G(X)$ and $G_{0}(X)$ be the space of self homotopy equivalences of X with the compact open topology and the space (subspace of $G(X)$) of self homotopy equivalences of X preserving the base point, respectively. When X is an EilenbergMacLane complex $K(\pi, \mathrm{n})$, the weak homotopy type of $G(X)$ and $G_{0}(X)$ are completely determined by R. Thom [4] and D. H. Gottlieb [1], but it seems that little is known about the homotopy type of $G(X)$ and $G_{0}(X)$.
2. Results. Now, let X and Y be connected locally finite $C W$ complexes with base points. Then there exists the following homeomorphisms (see [3]),

$$
\begin{aligned}
& (X \times Y)^{X \times Y} \cong X^{X \times Y} \times Y^{X \times Y} \cong\left(X^{X}\right)^{Y} \times\left(Y^{Y}\right)^{X}, \\
& (X \times Y)_{0}^{X \times Y} \cong X_{0}^{X \times Y} \times Y_{0}^{X \times Y}=\left(X^{X}, X_{0}^{X}\right)^{\left(Y, y_{0}\right)} \times\left(Y^{Y}, Y_{0}^{Y}\right)^{\left(X, x_{0}\right)},
\end{aligned}
$$

where Z_{0}^{K} denotes the space of maps of K to Z preserving the base points with the compact open topology, $\left(Z, Z^{\prime}\right)^{(K, L)}$ denotes the space of maps of (K, L) to $\left(Z, Z^{\prime}\right)$ and $\left(Z, Z^{\prime}\right)^{(K, L)}$ is regarded as a subspace of Z^{K}. Under these correspondences we have the following two theorems.

Theorem 1. Let X and Y be connected locally finite $C W$ complexes with base points. For given $n>0$, assume that $\pi_{i}(X)=0$ for every $i>n$ and $\pi_{i}(Y)=0$ for every $i \leqq n$. Then we have

$$
\begin{aligned}
& G(X \times Y)=G(X)^{Y} \times G(Y)^{X}, \\
& G_{0}(X \times Y)=\left(G(X), G_{0}(X)\right)^{\left(Y, y_{0}\right)} \times\left(G(Y), G_{0}(Y)\right)^{\left(X, x_{0}\right)} .
\end{aligned}
$$

Theorem 2. For given $n>0$, let X be a connected locally finite $C W$ complex with base point whose dimension is not greater than n and let Y be an n-connected locally finite $C W$ complex with base point. Then the same formulas on $G(X \times Y)$ and $G_{0}(X \times Y)$ as in Theorem 1 hold.

These theorems are obtained by considering the induced homomorphisms of homotopy groups of self map of ($X \times Y,\left(x_{0}, y_{0}\right)$).

Let X be a connected locally finite $C W$ complex with base point. Then every arcwise connected component of $G(X)$ has the same homotopy type. The same fact holds for $G_{0}(X)$. More generally, we have

