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1. Introduction. Let X be a connected CW complex with base
point which is a vertex o X. And let G(X) and Go(X) be the space o
self homotopy equivalences o X with the compact open topology and
the space (subspace of G(X)) o self homotopy equivalences of X pre-
serving the base point, respectively. When X is an Eilenberg-
MacLane complex K@, n), the weak homotopy type o G(X) and Go(X)
are completely determined by R. Thorn [4] and D. H. Gottlieb [1], but
it seems that little, is known about the. homotopy type of G(X) and
Go(X).

2. Results. Now, let X and Y be connected locally finite CW
complexes with base points. Then there exists the ollowing homeo-
morphisms (see [3]),

(x xY)-x xY (x) x (Y9,
(X Y)0x’X[r Y0xxr-- (Xx, X)(r,v) (Y, Y0)(x’),

where Zy denotes the space o maps o K to Z preserving the base
points with the compact open topology, (Z, Z’)(’) denotes the space
o maps of (K, L) to (Z, Z’) and (Z, Z’)(,) is regarded as a subspace of
Z. Under these correspondences we have the following two theo-
rems.

Theorem 1. Let X and Y be connected 19cally finite CW com-
plexes with base points. For given n>O, assume that s(X)=O .for
every i>n and s(Y)= 0 for every i<=n. Then we have

G(X X Y)= G(X)" G(Y)x,
Go(X Y)=(G(X), Go(X))(r’) (G(Y), Go(Y))(x’x.

Theorem 2. For given n0, let X be a connected locally finite
CW complex with base point whose dimension is not greater than n
and let Y be an n-connected locally finite CW complex with base point.
Then the same formulas on G(X Y) and Go(X Y) as in Theorem 1
hold.

These theorems are obtained by considering the induced homo-
morphisms of homotopy groups o self map o (X Y, (x0, Y0)).

Lst X be a connected locally finite CW complex with base point.
Then every arcwise connected component o G(X) has the sams hmo-
topy type. The same fact holds or Go(X). More generally, we have


