49. On Obstructions of Infinitesimal Lifting

By Takeshi Usa
Department of Mathematics, Kyoto University
(Communicated by Heisuke Hironaka, m. J. a., June 12, 1984)

Let X be the analytic submanifold of an algebraic manifold P defined by an ideal sheaf I_{X}. Let E be a holomorphic vector bundle on P and $\left.E\right|_{X}$ its restriction to X. Then, we consider the formal completion \hat{P} of P and the formal completion \hat{E} of E along X.

Assume that a holomorphic section $\bar{\sigma}$ of $\left.E\right|_{X}$ is given. Then, it is not easy to find a criterion in terms of $\bar{\sigma}$ and $\left.E\right|_{X}$ for liftability of the section $\bar{\sigma}$ to a section of \hat{E}. Getting a lifting $\hat{\sigma}$ in \hat{E} of $\bar{\sigma}$ is equivalent to constructing a system $\left\{\sigma_{(\mu)}\right\}_{\mu=1}^{\infty}$ of sections of $\left\{O_{P}(E) \otimes O_{P} / I_{X}^{\mu}\right\}$ such that (1) $\sigma_{(1)}=\bar{\sigma}$, (2) $\pi_{\mu+1}\left(\sigma_{(\mu+1)}\right)=\sigma_{(\mu)}$ for every $\mu \geqq 1$ where $\pi_{\mu+1} ; O_{P}(E) \otimes O_{P} / I_{X}^{\mu+1}$ $\rightarrow O_{P}(E) \otimes O_{P} / I_{X}^{\mu}$ is a natural projection.

When $\sigma_{(\mu)}$ is given, the obstruction for finding a lifting $\sigma_{(\mu+1)}$ of $\sigma_{(\mu)}$ is $\delta_{\mu}\left(\sigma_{(\mu)}\right)$ which appears in the following sequence,
$0 \longrightarrow H^{0}\left(O_{X}\left(\left.S^{(\mu)}\left(N_{X / P}^{*}\right) \otimes E\right|_{X}\right)\right) \longrightarrow H^{0}\left(O_{P}(E) \otimes O_{P} / I_{X}^{\mu+1}\right) \longrightarrow H^{0}\left(O_{P}(E) \otimes O_{P} / I_{X}^{\mu}\right)$
δ_{μ}
$H^{1}\left(O_{X}\left(S^{(\mu)}\left(N_{X / P}^{*}\right) \otimes E \overleftarrow{\left.\left.\left.\right|_{X}\right)\right) \longrightarrow \cdots}\right.\right.$
where $N_{X / P}^{*}$ is the conormal bundle of X in $P . \quad \delta_{\mu}\left(\sigma_{(\mu)}\right)$ is called " μ-th obstruction". The following fact should be pointed out here: Even if $\delta_{\left(\mu_{0}\right)}\left(\sigma_{\left(\mu_{0}\right)}\right)$ does not vanish for some system $\left\{\sigma_{(\mu)}\right\}_{\mu=1}^{\mu_{0}}$ in a course of constructing a system, this does not mean the impossibility of lifting of $\bar{\sigma}$. We may find another system $\left\{\tau_{(\mu)}\right\}_{\mu=1}^{\mu_{0}}$ with $\delta_{\left(\mu_{0}\right)}\left(\tau_{\left(\mu_{0}\right)}\right)=0$ which extends $\bar{\sigma}$.

Now, let us consider a following special case which is useful in the study of the defining equations. Let P be a projective space $\boldsymbol{P}^{N}(\boldsymbol{C})$ and E be $\Omega_{P}^{1}(\nu)=\Omega_{P}^{1} \otimes O_{P}(1)^{\otimes \nu}$.

Theorem. Assume the embedding of X into $P=\boldsymbol{P}^{N}$ is projectively normal. Then the given section $\bar{\sigma}$ of $H^{0}\left(X, \Omega_{P}^{1}(\nu) \otimes O_{X}\right)$ can be lifted to a section of $H^{0}\left(\hat{P}, \hat{\Omega}_{P}^{1}(\nu)\right)$ if and only if the first obstruction $\delta_{1}(\bar{\sigma})$ vanishes.

The full proof will be given in [1]. Here, we shall give only a rough sketch of the proof. First, we make a special vector subspace V_{0} of $H^{0}\left(X, \Omega_{P}^{1}(\nu) \otimes O_{X}\right)$ and another operator

$$
\mathfrak{D} ; H^{0}\left(X, \Omega_{P}^{1}(\nu) \otimes O_{X}\right) \longrightarrow H^{1}\left(X, O_{X}\left(N_{X / P}^{*}\right) \otimes \Omega_{P}^{1}(\nu)\right)
$$

by using special property of $\Omega_{P}^{1}(\nu)$. And then, we show that on V_{0}, \mathfrak{D}

