46. A Generalization of Gauss' Theorem on Arithmetic-Geometric Means

By Takashi Ono

Department of Mathematics, Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1983)

§1. Introduction and methods. With each continuous map $f: \mathbb{R}^n \to \mathbb{R}^m$ we associate an entire function $f^*(z)$ given by

$$f^{*}(z) = \int_{S^{n-1}} e^{zN(f(x))} d\omega_{n-1} \cdot \cdot \cdot$$

We shall assume throughout that

(1.1) $f(x) \neq 0$ for all $x \in S^{n-1}$,

hence N(f(x)) > 0 on S^{n-1} . When it is so, the integral

(1.2)
$$\Gamma(f;s) = \int_0^\infty t^{s-1} f^*(-t) dt$$

represents a holomorphic function for $\sigma = \text{Re } s > 0$. We have (1.3) $\Gamma(f; s) = \Gamma(s)K(f; s)$

where $\Gamma(s)$ is the usual gamma function and

(1.4)
$$K(f;s) = \int_{S^{n-1}} N(f(x))^{-s} d\omega_{n-1}.$$

By (1.1), K(f; s) is entire and (1.3) yields the meromorphic continuation of $\Gamma(f; s)$ onto C.

When n=m=2, $f(x)=(ax_1, bx_2)$, $0 < a \le b$ and s=1/2, our K(f; s) becomes the complete elliptic integral:

$$K\left(f;\frac{1}{2}\right) = \frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{\sqrt{a^2\cos^2\theta + b^2\sin^2\theta}} = \frac{2}{\pi} \int_0^{\pi/2} \frac{d\theta}{\sqrt{a^2\cos^2\theta + b^2\sin^2\theta}}.$$

Gauss proved, by means of quadratic transformations of theta series,

(G)
$$K\left(f;\frac{1}{2}\right) = K\left(f_1;\frac{1}{2}\right), \quad f_1(x) = (a_1x_1, b_1x_2)$$

where $a_1 = \sqrt{ab}$, $b_1 = (a+b)/2$.**) The repeated application of (G) yields immediately the relation $K(f; 1/2) = M(a, b)^{-1}$ where M(a, b) means the arithmetic-geometric of a, b.

In this paper, we shall generalize (G) for our K(f; s) defined by (1.4) when n=m=2p, $p>\sigma=\operatorname{Re} s>(p-1)/2$ and $f(x)=(ax_1, \dots, ax_p, bx_{p+1}, \dots, bx_{2p})$. The proof depends on the fact that, under the assumptions, K(f; s) can be expressed as a hypergeometric series via

^{*)} We denote by $\langle x, y \rangle$ the standard inner product in \mathbb{R}^n . We put $Nx = \langle x, x \rangle$. The unit sphere is $S^{n-1} = \{x \in \mathbb{R}^n; Nx = 1\}$. We denote by $d\omega_{n-1}$ the volume element of S^{n-1} such that the volume of S^{n-1} is 1.

^{**)} See [1] p. 352. See also [7] § 9 and [8] p. 269.