46. A Generalization of Gauss' Theorem on Arithmetic-Geometric Means

By Takashi Ono
Department of Mathematics, Johns Hopkins University

(Communicated by Shokichi Iyanaga, m. J. a., April 12, 1983)
§ 1. Introduction and methods. With each continuous map f : $\boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}$ we associate an entire function $f^{*}(z)$ given by

$$
\left.f^{\sharp}(z)=\int_{S_{n-1}} e^{2 N(f(x))} d \omega_{n-1} \cdot *\right)
$$

We shall assume throughout that

$$
\begin{equation*}
f(x) \neq 0 \quad \text { for all } x \in S^{n-1}, \tag{1.1}
\end{equation*}
$$ hence $N(f(x))>0$ on S^{n-1}. When it is so, the integral

$$
\begin{equation*}
\Gamma(f ; s)=\int_{0}^{\infty} t^{s-1} f^{*}(-t) d t \tag{1.2}
\end{equation*}
$$

represents a holomorphic function for $\sigma=\operatorname{Re} s>0$. We have

$$
\begin{equation*}
\Gamma(f ; s)=\Gamma(s) K(f ; s) \tag{1.3}
\end{equation*}
$$

where $\Gamma(s)$ is the usual gamma function and

$$
\begin{equation*}
K(f ; s)=\int_{s^{n-1}} N(f(x))^{-s} d \omega_{n-1} . \tag{1.4}
\end{equation*}
$$

By (1.1), $K(f ; s)$ is entire and (1.3) yields the meromorphic continuation of $\Gamma(f ; s)$ onto C.

When $n=m=2, f(x)=\left(a x_{1}, b x_{2}\right), 0<a \leqq b$ and $s=1 / 2$, our $K(f ; s)$ becomes the complete elliptic integral:

$$
K\left(f ; \frac{1}{2}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}=\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}} .
$$

Gauss proved, by means of quadratic transformations of theta series,

$$
\begin{equation*}
K\left(f ; \frac{1}{2}\right)=K\left(f_{1} ; \frac{1}{2}\right), \quad f_{1}(x)=\left(a_{1} x_{1}, b_{1} x_{2}\right) \tag{G}
\end{equation*}
$$

where $\left.a_{1}=\sqrt{a b}, b_{1}=(a+b) / 2 . * *\right) \quad$ The repeated application of (G) yields immediately the relation $K(f ; 1 / 2)=M(a, b)^{-1}$ where $M(a, b)$ means the arithmetic-geometric of a, b.

In this paper, we shall generalize (G) for our $K(f ; s)$ defined by (1.4) when $n=m=2 p, p>\sigma=\operatorname{Re} s>(p-1) / 2$ and $f(x)=\left(a x_{1}, \cdots, a x_{p}\right.$, $b x_{p+1}, \cdots, b x_{2 p}$). The proof depends on the fact that, under the assumptions, $K(f ; s)$ can be expressed as a hypergeometric series via

[^0]
[^0]: *) We denote by $\langle x, y\rangle$ the standard inner product in \boldsymbol{R}^{n}. We put $N x=\langle x, x\rangle$. The unit sphere is $S^{n-1}=\left\{x \in \boldsymbol{R}^{n} ; N x=1\right\}$. We denote by $d \omega_{n-1}$ the volume element of S^{n-1} such that the volume of S^{n-1} is 1 .
 **) See [1] p. 352. See also [7] § 9 and [8] p. 269.

