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1. Introduction and methods. With each con’inuous map f"
Rn--R we associate an entire function f#(z) given by

f(z) eN (f (x) do)n .
sn-,

We shall assume throughout that
(1.1) f(x)=/=O for all x e Sn-l,
hence N(f(x))O on S-. When it is so, the integral

represents a holomorphic function for a=Re s0. We have
(1.3) F(f s)=F(s)K(f; s)
where F(s) is the usual gamma function and

(1.4) K(f s)= N(f(x))-dw_.
Jsn-

By (1.1), K(f;s) is entire and (1.3) yields the meromorphic continu-
atio.n of F(f; s) onto C.

When n=m=2, f(x)=(ax, bx), Oab and s=1/2, our K(f;s)
becomes the complete elliptic integral"

K f; = hcos0+bsino coso+bsin0
Gauss proved, by means of quadratic transformations of theta series,

(1)(G) K f =K f f(x)=(ax, bx)

where a=, b=(a+b)/2.**) The repeated application of (G)
yields immediately the relation K(f ;1/2)=M(a, b)- where M(a, b)
means the arithmetic-geometric of a, b.

In this paper, we shall generalize (G) for our K(f;s) defined by
(1.4) when n=m=2p, p>a=Res>(p-1)/2 and f(x)=(ax,..., axe,
bx+,..., bx). The proof depends on the act that, under the as-
sumptions, K(f;s) can be expressed as a hypergeometric series via

*) We denote by (x, y) the standard inner product in Rn. We put Nx--(x, x).
The unit sphere is Sn-l-(x e Rn; Nx--1}. We denote by do,n_1 the volume element
of Sn- such that the volume of Sn- is 1.

**) See [1] p. 352. See also [7] 9 and [8]p. 269.


