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Let M be a complex manifold and let H be a divisor on M.
Denote by/2 the sheaf over M of germs of holomorphic p-forms and
denote by/2(*H) the sheaf over M of germs of meromorphic p-forms
which are holomorphic in M--H and have poles on H for p-0, ..., n.
In case p-0, we use frequently d} and G(*H)instead of/2 and/2(*H),
respectively.

We suppose throughout this paper that the divisor H has at most
normal crossings.

Let q be a locally ree sheaf of d-modules of rank m on M. For
each point x in M, there exists a neighborhood U over which SI is
isomorphic to ((]r)=dg(R)cC. Denote the isomorphism by g. De-
fine the locally free sheaf $2p(*H) of d)(*H)-modules of rank m over
M by

[2p(*H) (R)09p(*H),
for p=O,..., n. For p=0, instead of $/2(*H), we use frequently
$(*H) of which the restriction to U, 3(*H)Iv is isomorphic to (O(*H)) Iv
=(d)(R)d)(*H))[v by the mapping gv(R)id, which will be denoted also
by gv.

Let 17 be a connection on $(*H) /7 is an additive mapping of $(*H)
into (*H)(R)o(H.)I2(*H)=$(*H)(R)og=S(R)oI2(*H)=$2(*H) satisfy-
ing "Leibnitz rule"

V(f u) --u(R) df -Ff V(u)
for all sections f e (C)(*H)(U), u e $$2X(*H)(U). We suppose that the
connection is integrable, that is, the composite mapping

W" $(*H) > qgt(*H) > qg(*H)
is a zero mapping.

I we take adequately an open covering {U} on M, then to give
connection V means the following; for each U,, the mapping

gv P’ gs, (O(*H)]v) ; (O(*H)) (DOT2’ 1,
is induced by a mapping

17 (O(*H) (UD) ----+ ((O(*H) (R)o2’) (UD),
which is represented by (d+9) under a generator system <e,,, ., e,>


