24. Construction of Integral Basis. II

By Kösaku OKUTSU

Department of Mathematics, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1982)

Let o be a complete discrete valuation ring with the maximal ideal v, k its quotient field, \bar{k} an algebraic closure of k, and k_s the separable closure of k in \bar{k} . Let θ be an element of k_s which is integral over o. In Part I, we have defined divisor polynomials and integrality indexes of θ , by means of which we have given an integral basis of $k(\theta)$ explicitly.

In this part, we shall define primitive divisor polynomials of θ , with which the divisor polynomials of θ will be expressed explicitly. We denote by $| \ |$ a fixed valuation of \bar{k} , extending the valuation of k. Let f(x) be the minimal polynomial of θ over k, and assume that the degree of n of f(x) is greater than 1.

§1. We define a finite sequence $\{\lambda_i(\theta, k)\}_{i=1,2,...,r}$ of real numbers and a finite sequence $\{m_i(\theta, k)\}_{i=0,1,2,...,r}$ of natural numbers inductively as follows.

Definition 1. We put $m_0(\theta, k) = n$, $\lambda_i(\theta, k) = \min\{|\theta - \beta| | \beta \in \bar{k} \text{ such that } [k(\beta):k] < m_{i-1}(\theta, k)\}$, and $m_i(\theta, k) = \min\{[k(\gamma):k] | \gamma \in \bar{k} \text{ such that } |\theta - \gamma| = \lambda_i(\theta, k)\}$. We have clearly $\lambda_i(\theta, k) < \lambda_{i+1}(\theta, k)$ and $m_i(\theta, k) > m_{i+1}(\theta, k)$, and there exists some integer r such that $m_r(\theta, k) = 1$. r is said to be the *depth* of f(x) or of θ over k.

 $\lambda_i(\theta, k)$ and $m_i(\theta, k)$ do not depend upon the choice of a root θ of f(x).

Proposition 1. There exists an element α_i of k_s satisfying $|\theta - \alpha_i| = \lambda_i(\theta, k)$, and $[k(\alpha_i): k] = m_i(\theta, k)$ $(i=1, \dots, r)$.

Definition 2. We call the minimal polynomial of α_i over k an *i*-th primitive divisor polynomial of θ or of f(x) over k.

Proposition 2. An *i*-th primitive divisor polynomial of f(x) over k is a divisor polynomial of f(x) of degree $m_i(\theta, k)$ over k.

Proposition 3. We assume that the depth r of f(x) is greater than 1. Then for any integer i $(1 < i \le r)$, an *i*-th primitive divisor polynomial of f(x) over k is a first primitive divisor polynomial over k of an (i-1)-th primitive divisor polynomial of f(x) over k.

Now we assume that an element θ of k_s is not contained in k. Let α , η be two elements of k_s such that $|\theta - \eta| = \lambda_1(\theta, k)$, and $|\theta - \alpha| = \lambda_1(\theta, k)$, $[k(\alpha):k] = m_1(\theta, k)$. For any Galois extension F of k, we denote by G(F/k) the Galois group of F over k. Suppose that F contains $k(\theta, \alpha, \eta)$.