24. Construction of Integral Basis. II

By Kōsaku Okutsu
Department of Mathematics, Gakushuin University
(Communicated by Shokichi Iyanaga, m. J. a., Feb. 12, 1982)

Let o be a complete discrete valuation ring with the maximal ideal \mathfrak{y}, k its quotient field, \bar{k} an algebraic closure of k, and k_{s} the separable closure of k in \bar{k}. Let θ be an element of k_{s} which is integral over \mathfrak{o}. In Part I, we have defined divisor polynomials and integrality indexes of θ, by means of which we have given an integral basis of $k(\theta)$ explicitly.

In this part, we shall define primitive divisor polynomials of θ, with which the divisor polynomials of θ will be expressed explicitly. We denote by | | a fixed valuation of \bar{k}, extending the valuation of k. Let $f(x)$ be the minimal polynomial of θ over k, and assume that the degree of n of $f(x)$ is greater than 1 .
$\S 1$. We define a finite sequence $\left\{\lambda_{i}(\theta, k)\right\}_{i=1,2, \ldots, r}$ of real numbers and a finite sequence $\left\{m_{i}(\theta, k)\right\}_{i=0,1,2, \ldots, r}$ of natural numbers inductively as follows.

Definition 1. We put $m_{0}(\theta, k)=n, \lambda_{i}(\theta, k)=\min \{|\theta-\beta| \mid \beta \in \bar{k}$ such that $\left.[k(\beta): k]<\mathrm{m}_{i-1}(\theta, k)\right\}$, and $m_{i}(\theta, k)=\min \{[k(\gamma): k] \mid \gamma \in \bar{k}$ such that $\left.|\theta-\gamma|=\lambda_{i}(\theta, k)\right\}$. We have clearly $\lambda_{i}(\theta, k)<\lambda_{i+1}(\theta, k)$ and $m_{i}(\theta, k)$ $>m_{i+1}(\theta, k)$, and there exists some integer r such that $m_{r}(\theta, k)=1 . \quad r$ is said to be the depth of $f(x)$ or of θ over k.
$\lambda_{i}(\theta, k)$ and $m_{i}(\theta, k)$ do not depend upon the choice of a root θ of $f(x)$.

Proposition 1. There exists an element α_{i} of k_{s} satisfying $\left|\theta-\alpha_{i}\right|$ $=\lambda_{i}(\theta, k)$, and $\left[k\left(\alpha_{i}\right): k\right]=m_{i}(\theta, k)(i=1, \cdots, r)$.

Definition 2. We call the minimal polynomial of α_{i} over k an i-th primitive divisor polynomial of θ or of $f(x)$ over k.

Proposition 2. An i-th primitive divisor polynomial of $f(x)$ over k is a divisor polynomial of $f(x)$ of degree $m_{i}(\theta, k)$ over k.

Proposition 3. We assume that the depth r of $f(x)$ is greater than 1. Then for any integer $i(1<i \leq r)$, an i-th primitive divisor polynomial of $f(x)$ over k is a first primitive divisor polynomial over k of an (i-1)-th primitive divisor polynomial of $f(x)$ over k.

Now we assume that an element θ of k_{s} is not contained in k. Let α, η be two elements of k_{s} such that $|\theta-\eta|=\lambda_{1}(\theta, k)$, and $|\theta-\alpha|=\lambda_{1}(\theta, k)$, $[k(\alpha): k]=m_{1}(\theta, k)$. For any Galois extension F of k, we denote by $G(F / k)$ the Galois group of F over k. Suppose that F contains $k(\theta, \alpha, \eta)$.

