No. 10]

117. Product Formula for Nonlinear Semigroups in Hilbert Spaces

By Yoshikazu KOBAYASHI Faculty of Engineering, Niigata University

(Communicated by Kôsaku Yosida, M. J. A., Dec. 13, 1982)

1. Introduction. Let H be a real Hilbert space. Let A and B be maximal monotone (multi-valued) operators in H such that A+B is also maximal monotone in H. (We refer to the work of Brezis [2] for basic results concerning maximal monotone operators.) Let $\{S_A(t); t \ge 0\}, \{S_B(t); t \ge 0\}$ and $\{S_{A+B}(t); t \ge 0\}$ be the contractive semigroups in H generated by -A, -B and -(A+B), respectively. The purpose of this paper is to show the following result.

Theorem. If there exists a closed convex set $C \subset \overline{D}(A) \cap D(B)$ such that $(I + \lambda A)^{-1}(C) \subset C$ and $(I + \lambda B)^{-1}(C) \subset C$ for $\lambda > 0$, then (1.1) $S_{A+B}(t)x = \lim_{n \to \infty} (S_A(t/n)S_B(t/n))^n x$ for each $x \in C \cap \overline{D}(A) \cap \overline{D}(B)$ and each $t \ge 0$ and the convergence is uni-

for each $x \in C \cap D(A) \cap D(B)$ and each $t \ge 0$ and the convergence is uniform on each finite interval of $[0, \infty)$.

This theorem was proved by Brezis and Pazy in [3] with the extra assumption that A and B are single-valued. Similar results are obtained for some Banach spaces as well and will be treated in the forthcoming paper [5] of the author.

2. Proof of the theorem. (Step 1.) By Proposition 4.5 in [2], $S_A(t)$ and $S_B(t)$ are contractions on C into itself. So we shall prove the convergence

 $\lim_{t\to 0^+} (I + \lambda t^{-1} (I - S_A(t) S_B(t)))^{-1} x = (I + \lambda (A + B))^{-1} x$

for each $x \in C \cap D(A) \cap D(B)$ and each $\lambda > 0$, from which our assertion is derived through Theorem 4.3 of [2]. To this end, let $\lambda > 0$, fix any $x \in C \cap \overline{D(A) \cap D(B)}$ and set u(t) any y_0 to be $(I + \lambda t^{-1}(I - S_A(t)S_B(t))^{-1}x$ and $(I + \lambda (A + B))^{-1}x$, respectively. It can easily be seen that

(2.1) $\lambda^{-1}(u(t)-x) = t^{-1}(S_A(t)S_B(t)u(t)-u(t)),$ u(t) are contained in C for all t>0 and u(t) is bounded as $t\to 0+$. Since $S_A(t)$ and $S_B(t)$ are contractions from C into itself, the indefinite

integrals

$$v(t) = t^{-1} \int_0^t S_B(s)u(t)ds$$
 and $w(t) = t^{-1} \int_0^t S_A(s)S_B(t)u(t)ds$

are contained in C for all t>0 and bounded as $t\rightarrow 0+$. Therefore, one can choose a null sequence $\{t_n\}$ of positive numbers such that

(2.2)
$$u(t_n) \rightarrow u_0, v(t_n) \rightarrow v_0 \text{ and } w(t_n) \rightarrow w_0$$

as $n \rightarrow \infty$, where the symbol \rightarrow means the weak convergence and u_0, v_0