117. Product Formula for Nonlinear Semigroups in Hilbert Spaces

By Yoshikazu Kobayashi
Faculty of Engineering, Niigata University
(Communicated by Kôsaku Yosida, m. J. A., Dec. 13, 1982)

1. Introduction. Let H be a real Hilbert space. Let A and B be maximal monotone (multi-valued) operators in H such that $A+B$ is also maximal monotone in H. (We refer to the work of Brezis [2] for basic results concerning maximal monotone operators.) Let $\left\{S_{A}(t) ; t \geqq 0\right\},\left\{S_{B}(t) ; t \geqq 0\right\}$ and $\left\{S_{A+B}(t) ; t \geqq 0\right\}$ be the contractive semigroups in H generated by $-A,-B$ and $-(A+B)$, respectively. The purpose of this paper is to show the following result.

Theorem. If there exists a closed convex set $C \subset \overline{D(A) \cap D(B)}$ such that $(I+\lambda A)^{-1}(C) \subset C$ and $(I+\lambda B)^{-1}(C) \subset C$ for $\lambda>0$, then
$S_{A+B}(t) x=\lim _{n \rightarrow \infty}\left(S_{A}(t / n) S_{B}(t / n)\right)^{n} x$
for each $x \in C \cap \overline{D(A) \cap D(B)}$ and each $t \geqq 0$ and the convergence is uniform on each finite interval of $[0, \infty)$.

This theorem was proved by Brezis and Pazy in [3] with the extra assumption that A and B are single-valued. Similar results are obtained for some Banach spaces as well and will be treated in the forthcoming paper [5] of the author.
2. Proof of the theorem. (Step 1.) By Proposition 4.5 in [2], $S_{A}(t)$ and $S_{B}(t)$ are contractions on C into itself. So we shall prove the convergence

$$
\lim _{t \rightarrow 0+}\left(I+\lambda t^{-1}\left(I-S_{A}(t) S_{B}(t)\right)\right)^{-1} x=(I+\lambda(A+B))^{-1} x
$$

for each $x \in C \cap \overline{D(A) \cap D(B)}$ and each $\lambda>0$, from which our assertion is derived through Theorem 4.3 of [2]. To this end, let $\lambda>0$, fix any $x \in C \cap \overline{D(A) \cap D(B)}$ and set $u(t)$ any y_{0} to be $\left(I+\lambda t^{-1}\left(I-S_{A}(t) S_{B}(t)\right)^{-1} x\right.$ and $(I+\lambda(A+B))^{-1} x$, respectively. It can easily be seen that

$$
\begin{equation*}
\lambda^{-1}(u(t)-x)=t^{-1}\left(S_{A}(t) S_{B}(t) u(t)-u(t)\right), \tag{2.1}
\end{equation*}
$$

$u(t)$ are contained in C for all $t>0$ and $u(t)$ is bounded as $t \rightarrow 0+$. Since $S_{A}(t)$ and $S_{B}(t)$ are contractions from C into itself, the indefinite integrals

$$
v(t)=t^{-1} \int_{0}^{t} S_{B}(s) u(t) d s \quad \text { and } \quad w(t)=t^{-1} \int_{0}^{t} S_{A}(s) S_{B}(t) u(t) d s
$$

are contained in C for all $t>0$ and bounded as $t \rightarrow 0+$. Therefore, one can choose a null sequence $\left\{t_{n}\right\}$ of positive numbers such that

$$
\begin{equation*}
u\left(t_{n}\right) \rightharpoonup u_{0}, v\left(t_{n}\right) \rightharpoonup v_{0} \quad \text { and } \quad w\left(t_{n}\right) \rightharpoonup w_{0} \tag{2.2}
\end{equation*}
$$

as $n \rightarrow \infty$, where the symbol \rightarrow means the weak convergence and u_{0}, v_{0}

