116. A Stationary Free Boundary Problem for a Circular Flow with or without Surface Tension^{*)}

By Hisashi Окамото

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Dec. 13, 1982)

§1. In this note we are concerned with a free boundary problem which is a model for a flow around a planet. The problem is stated as follows.

Problem. Given a unit circle Γ in \mathbb{R}^2 , find a closed Jordan curve γ outside Γ and a function V such that

(1.2)
$$V|_r = 0, \quad V|_r = a_r$$

(1.3) $\frac{1}{2} |\nabla V|^2 + Q + \sigma K_r = \text{unknown constant on } \gamma,$

(1.4) $|\Omega_r| = \omega_0.$

Here Ω_{γ} is a doubly connected domain between Γ and γ (see Fig. 1). Constants a > 0, $\omega_0 > 0$ and $\sigma \ge 0$ are given. σ is the surface tension coefficient. Q is a given function defined outside Γ . K_{γ} is the curvature of γ ($K_{\gamma} > 0$ if γ is convex). $|\Omega_{\gamma}|$ denotes the area of Ω_{γ} .

Remark. We have assumed that the fluid is perfect, irrotational and that V is a stream function for the flow. Ω_{γ} is the flow region.

The more precise physical meaning of this problem will be explained in a forthcoming paper where we will give proofs of theorems in § 2.

Trivial solution. If Q is radially symmetric, i.e., $Q=Q_0(r)$ $(r=(x^2+y^2)^{1/2})$, then there exists the following trivial solution. Take a number $r_0>1$ satisfying $\pi r_0^2 - \pi = \omega_0$. Then a circle γ_0 of radius r_0 with the origin as its center is a solution for any $\sigma \ge 0$. In fact the

^{*)} Partially supported by the Fûjukai.