116. A Stationary Free Boundary Problem for a Circular Flow with or without Surface Tension*)

By Hisashi Okamoto
Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, m. J. A., Dec. 13, 1982)
§ 1. In this note we are concerned with a free boundary problem which is a model for a flow around a planet. The problem is stated as follows.

Problem. Given a unit circle Γ in \boldsymbol{R}^{2}, find a closed Jordan curve γ outside Γ and a function V such that

$$
\begin{array}{ll}
\Delta V=0 & \text { in } \Omega_{r}, \tag{1.1}\\
\left.V\right|_{\Gamma}=0, & \left.V\right|_{r}=a,
\end{array}
$$

$$
\begin{equation*}
\frac{1}{2}|\nabla V|^{2}+Q+\sigma K_{r}=\text { unknown constant on } \gamma \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\left|\Omega_{\gamma}\right|=\omega_{0} . \tag{1.4}
\end{equation*}
$$

Here Ω_{γ} is a doubly connected domain between Γ and γ (see Fig. 1). Constants $a>0, \omega_{0}>0$ and $\sigma \geqq 0$ are given. σ is the surface tension coefficient. $\quad Q$ is a given function defined outside $\Gamma . K_{r}$ is the curvature of γ ($K_{r}>0$ if γ is convex). $\left|\Omega_{r}\right|$ denotes the area of Ω_{r}.

Fig. 1
Remark. We have assumed that the fluid is perfect, irrotational and that V is a stream function for the flow. Ω_{γ} is the flow region.

The more precise physical meaning of this problem will be explained in a forthcoming paper where we will give proofs of theorems in § 2.

Trivial solution. If Q is radially symmetric, i.e., $Q=Q_{0}(r)$ ($r=\left(x^{2}+y^{2}\right)^{1 / 2}$), then there exists the following trivial solution. Take a number $r_{0}>1$ satisfying $\pi r_{0}^{2}-\pi=\omega_{0}$. Then a circle γ_{0} of radius r_{0} with the origin as its center is a solution for any $\sigma \geqq 0$. In fact the

[^0]
[^0]: *) Partially supported by the Fûjukai.

