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1o Diophantine ecluations of the following type have been dis-
cussed by many authors.

Let K be an algebraic number field of some type (e.g. totally real,
abelian over Q, or "almost real" cf. [3]), a, fl given roots of unity, and
m a given natural number. Find the solutions of the ecluation"
( 1 ) -ka=V, e K(/fl-), ] e U(),
where U will mean the group of units of the algebraic number field
F. (C. [1]-[5]. E.g. it is shown in [3] that when K is almost real,
--fl-- --1, m>__3, e U, then the only possible solutions are given by
--a root of unity. This covers the results of [2], [5].)

We shall denote in the following the ring of integers of the field
F by (C). p will mean an odd prime, and or any natural number n,
will mean a primitive n th root o unity.

Remark. From (1) ollows immediately e
In this note, we prove the ollowing three theorems"
Theorem A. Suppose K to be totally real and m-1 in (1).
( I ) If c--/-- 4, then -O.
(II) If a---fl--p, then -(5-1-5p)/(1-) with c e {1, 2, ...,

p-i}.
(III) If c=fl=, K is moreover non-abelian and of prime degree

over Q, then $=0 or 1.
Remark. To Theorem A may be associated a problem posed by

Julia Robinson, cited in [4], asking 2or possibilities o expressing I as
the difference of two units in an algebraic number field.

Theorem B. Suppose K to be totally real, m>=2, a=fl=l, V4=1.
Then the only possible solutions of (1) are given by --a root of unity.

Theorem C. Suppose K/Q to be abelian, m=2, a---1 and
where tc is an odd natural number >=3. Then the only solution of (1)
is =0, V=I.

2. Proof of Theorem A. Our eiuation is in this case +a=V,
a=fl= or , e K(a+a-9, V e U(.). Notice first should be e
as a, V e

( I ) Suppose 4= 0. As K (+;):K is totally real, all conju-
gates ’ of $ are real, and [’_+]1, so that+ can not be e


