113. On Certain Diophantine Equations in Algebraic Number Fields

By Mutsuo Watabe
Department of Mathematics, Keio University
(Communicated by Shokichi Ifanaga, m. J. A., Nov. 12, 1982)

1. Diophantine equations of the following type have been discussed by many authors.

Let K be an algebraic number field of some type (e.g. totally real, abelian over \boldsymbol{Q}, or "almost real" cf. [3]), α, β given roots of unity, and m a given natural number. Find the solutions of the equation:

$$
\begin{equation*}
\xi^{m}+\alpha=\eta, \quad \xi \in K\left(\beta+\beta^{-1}\right), \quad \eta \in U_{K(\beta)}, \tag{1}
\end{equation*}
$$

where U_{F} will mean the group of units of the algebraic number field F. (Cf. [1]-[5]. E.g. it is shown in [3] that when K is almost real, α $=\beta=-1, m \geqq 3, \xi \in U_{K}$, then the only possible solutions are given by ξ $=\mathrm{a}$ root of unity. This covers the results of [2], [5].)

We shall denote in the following the ring of integers of the field F by \mathcal{O}_{F}. p will mean an odd prime, and for any natural number n, ζ_{n} will mean a primitive nth root of unity.

Remark. From (1) follows immediately $\xi \in \mathcal{O}_{K(\beta+\beta-1)}$.
In this note, we prove the following three theorems:
Theorem A. Suppose K to be totally real and $m=1$ in (1).
(I) If $\alpha=\beta=\zeta_{4}$, then $\xi=0$.
(II) If $\alpha=\beta=\zeta_{p}$, then $\xi=\left(\zeta_{p}^{c-1}-\zeta_{p}\right) /\left(1-\zeta_{p}^{c}\right)$ with $c \in\{1,2, \cdots$, $p-1\}$.
(III) If $\alpha=\beta=\zeta_{p}, K$ is moreover non-abelian and of prime degree over \boldsymbol{Q}, then $\xi=0$ or 1 .

Remark. To Theorem A may be associated a problem posed by Julia Robinson, cited in [4], asking for possibilities of expressing 1 as the difference of two units in an algebraic number field.

Theorem B. Suppose K to be totally real, $m \geqq 2, \alpha=\beta=1, \eta \neq 1$. Then the only possible solutions of (1) are given by $\xi=a$ root of unity.

Theorem C. Suppose K / \boldsymbol{Q} to be abelian, $m=2, \alpha=1$ and $\beta=\zeta_{4 k}$ where k is an odd natural number $\geqq 3$. Then the only solution of (1) is $\xi=0, \eta=1$.
2. Proof of Theorem A. Our equation is in this case $\xi+\alpha=\eta$, $\alpha=\beta=\zeta_{4}$ or $\zeta_{p}, \xi \in K\left(\alpha+\alpha^{-1}\right), \eta \in U_{K(\alpha)}$. Notice first ξ should be $\in \mathcal{O}_{K(\alpha)}$ as $\alpha, \eta \in \mathcal{O}_{K(\alpha)}$.
(I) Suppose $\xi \neq 0$. As $K\left(\zeta_{4}+\zeta_{4}^{-1}\right)=K$ is totally real, all conjugates ξ^{\prime} of ξ are real, and $\left|\xi^{\prime} \pm \xi_{4}\right|>1$, so that $\xi+\zeta_{4}$ can not be $\in U_{K\left(\zeta_{4}\right)}$.

