99. Characterization of Extremely Amenable Semigroups with a Unique Invariant Mean

By Koukichi SAKAI
Department of Mathematics, Kagoshima University
(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1982)

- § 1. Introduction. Let S be an abstract semigroup and m(S)the Banach space of all bounded real functions on S with the supremum norm. Let ψ be a mean on S i.e., ψ is a linear functional on m(S)such that $\|\psi\| = \psi(I_s) = 1$, where in general I_A is the characteristic function of any subset A of S. ψ is called *multiplicative* if $\psi(fg) = \psi(f)\psi(g)$ for any $f, g \in m(S)$. ψ is said to be left [right] invariant if $\psi(f)$ $=\psi(s)[\psi(f)=\psi(f_s)]$ for any $f\in m(S)$ and $s\in S$, where sf(t)=f(st) and $f_s(t) = f(ts)$ $(t \in S)$. By LM(S)[RM(S)] we denote the set of all left [right] invariant means on S, and by MLM(S)[MRM(S)] denote the set of all multiplicative left [right] invariant means on S. Any element in $LM(S) \cap RM(S)$ is called an *invariant mean* on S. We say that S is left [right] amenable if LM (S) [RM (S)] $\neq \phi$ (empty). In particular S is called extremely left [right] amenable if $MLM(S)[MRM(S)] \neq \phi$. Further S is called extremely amenable if $MLM(S) \cap MRM(S) \neq \phi$. It is proved in Granirer [2] that S is extremely left amenable if and only if it has the following property:
- (CRZ) For any $a, b \in S$ there exists $c \in S$ such that ac=bc=c. Suppose now S is extremely left amenable. Let us introduce a pseudo-order relation " \leq " in S defined as follows: For any $a, b \in S$, $a \leq b$ if either a=b or ab=b. Then by virtue of (CRZ), (S, \leq) is regarded as a directed set. A subset A of S is called *cofinal* (with respect to \leq) if for any given $s \in S$ there exists $t \in A$ such that $s \leq t$. For any fixed $p \in S$ we denote by δ_p a mean on S defined by $\delta_p(f) = f(p)$ ($f \in m(S)$).

The purpose of this paper is to prove the following theorems concerning semigroups with a unique multiplicative invariant mean.

Theorem 1. Let S be extremely left amenable. The following conditions for S are equivalent:

- (1) S admits a unique multiplicative left invariant mean.
- (2) S admits a unique left invariant mean.
- (3) For any subset A of S there exists $t \in S$ such that either $tS \subseteq A$ or $tS \cap A = \phi$.
- (4) S has the property that if a subset A of S satisfies $sS \cap A \neq \phi$ for all $s \in S$, then $tS \subseteq A$ for some $t \in S$.