92. On 2-Rank of the Ideal Class Groups of Totally Real Number Fields

By Humio Ichimura
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. a., Sept. 13, 1982)

§ 1. Introduction. We are concerned with the problem to construct infinitely many number fields of a given degree m and with a given number of real (resp. complex) absolute values r_{1} (resp. r_{2}), for which the ideal class group contains a given finite abelian group A as a subgroup. Ishida [4] (resp. [5]) solved this problem when m is any odd prime number, $r_{1}=1$ (resp. $r_{1}=3$) and A is an elementary 2-abelian group with rank $m-1$ (resp. A is any elementary m-abelian group). But when $r_{2}=0$, no results are known to the author, except when m is small, i.e. when $m=2$ and A is cyclic (by Yamamoto [9] and Weinberger [8]) and when $m=3$ and A is cyclic (by Uchida [7] and Ichimura [3]).

In this paper, we consider the problem in the case $r_{2}=0$ and A is an elementary 2 -abelian group. When m is even, this can be solved for any such A by composing a totally real number field of degree $m / 2$ with a real quadratic field with a large genus number. When m is odd, we use the method of [4] to prove the following

Theorem. For any odd natural number $m(>1)$, there exist infinitely many totally real number fields of degree m, for which the ideal class group contains an elementary 2-abelian group with rank ($m-1$)/2 as a subgroup.

Our method of the proof is sketched as follows. Let $f(X)$ $=X \prod_{i=1}^{m-1}\left(X-A_{i}\right)-C^{2}$ be an irreducible polynomial, where A_{i} and C are rational integers satisfying some congruence and other conditions. Let θ be a root of $f(X)$, and set $K=\boldsymbol{Q}(\theta)$. Then, K is totally real and $K\left(\sqrt{\theta-A_{1}}, \sqrt{\theta-A_{2}}, \cdots, \sqrt{\theta-A_{m-1}}\right)$ contains an unramified abelian extension over K of type ($2, \cdots, 2$) with rank ($m-1$)/2.

Remark 1. Recently, Azuhata and Ichimura [1] solved our problem for any $r_{1} \geqq 0, r_{2}>0$ and any abelian group A with $r a n k \leqq r_{2}$. As in [1], we can solve the problem for any odd rational integer $r_{1} \geqq 1$, any rational integer $r_{2} \geqq 0$, and an elementary 2 -abelian group A with rank $2 r_{2}+\left(r_{1}-1\right) / 2$.
§ 2. Proof of the theorem. Let $m(>1)$ be a given odd number. We consider a polynomial of the form $f(X)=X \prod_{i=1}^{m-1}\left(X-\mathbf{A}_{i}\right)-C^{2}$ for rational integers A_{i} and C. Let $p_{i}(1 \leqq i \leqq m-1)$ be prime numbers

