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1. Introduction. We are concerned with the problem to con-
struct infinitely many number fields of a given degree m and with a
given number of real (resp. complex)absolute values r (resp. r), for
which the ideal class group contains a given finite abelian group A as
a subgroup. Ishida [4] (resp. [5]) solved this problem when m is any
odd prime number, r 1 (resp. r 3) and A is an elementary 2-abelian
group with rank m-1 (resp. A is any elementary m-abelian group).
But when r=0, no results are known to the author, except when m
is small, i.e. when m=2 and A is cyclic (by Yamamoto [9] and
Weinberger [8]) and when m-3 and A is cyclic (by Uchida [7] and
Ichimura [3]).

In this paper, we consider the problem in the case r.=0 and A is
an elementary 2-abelian group. When m is even, this can be solved
for any such A by composing a totally real number field of degree m/2
with a real quadratic field with a large genus number. When m is
odd, we use the method of [4] to prove the following

Theorem. For any odd natural number m (>1), there exist
infinitely many totally real number fields of degree m, for which the
ideal class group contains an elementary 2-abelian group with rank
(m- 1)/2 as a subgroup.

Our method of the proof is sketched as follows. Let f(X)
=X l-[3 (X--A3-C be an irreducible polynomial, where A, and C
are rational integers satisfying some congruence and other conditions.
Let t be root of f(X), and set K= Q(a). Then, K is totally real and
K(/-A,, /-A,..., JO-A_,) contains an unramified abelian ex-
tension over K of type (2,..., 2) with rank (m-1)/2.

Remark 1. Recently, Azuhata and Ichimura [1] solved our prob-
lem for any r>=0, r>0 and any abelian group A with rank =<_r. As
in [1], we can solve the problem for any odd rational integer r>=l,
any rational integer r>=0, and an elementary 2-abelian group A with
rank 2r+(r- 1) /2.

2. Proof of the theorem. Let m (>1) be a given odd number.
We consider a polynomial of the form f(X)=X I-[ (X--A3-C for
rational integers A, and C. Let p, (1<_i_<m-1) be prime numbers


