78. On Integral Transformations Associated with a Certain Riemannian Metric

By Atsushi INOUE*) and Yoshiaki MAEDA**)

(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1982)

§ 1. Statement of the result. Let (M, g) be a complete, connected and simply connected Riemannian manifold of dim M=m. We consider the following integral transformation with a parameter t>0.

$$(H_{\iota}f)(x) = (2\pi t)^{-m/2} \int_{M} \rho(x, y) e^{-d^{2}(x, y)/2t} f(y) d_{g}(y),$$

where $d_g(y) = g(y)^{1/2} dy$, $g(y) = \det g_{ij}(y)$, d(x, y) denotes the Riemannian distance between x, y and $\rho(x, y) = |\det (d \operatorname{Exp}_x^{-1})_y|^{1/2}$ with Exp_x standing for the exponential mapping at x.

We assume the following:

- (A.1) (M, g) has a non-positively pinched sectional curvature, i.e. there exists a constant k>0 such that for any 2-plane π , the sectional curvature K_{π} satisfies $-k^2 \leq K_{\pi} \leq 0$.
- (A.2) There exist constants C_1 , C_2 such that for any x, y and $z \in M$, we have

$$egin{aligned} |ec{ert}^{(z)}
ho(x,z)| & \leq C_1, \ |ec{ert}^{(z)}
ho(x,z) - ec{ert}^{(z)}
ho(y,z)| & \leq C_2 d(x,y) \end{aligned}$$

where $\Delta^{(z)}$ is the Laplace-Beltrami operator acting on a function of z, i.e.,

$$\Delta^{(z)} f(z) = g(z)^{-1/2} \sum_{i, j=1}^{m} (\partial/\partial z^{i}) (g(z)^{1/2} g^{ij}(z) (\partial f(z)/\partial z^{j})).$$

Theorem. Let (M, g) be a Riemannian manifold satisfying above conditions. Then, we have the following for an arbitrary number T>0.

- (a) The integral transformation H_t defines a bounded linear operator in $L^2(M, d_g)$ for 0 < t < T.
 - (b) $s \lim_{t \to 0+} H_t f = f \text{ for } f \in L^2(M, d_a).$
 - (c) There exists a constant C_3 such that

$$\|\boldsymbol{H}_{t+s}\boldsymbol{f}\!-\!\boldsymbol{H}_{t}\!\boldsymbol{H}_{s}\boldsymbol{f}\|\!\! \leq \!\! C_{3}((t\!+\!s)^{\scriptscriptstyle{3/2}}\!-\!t^{\scriptscriptstyle{3/2}}\!+\!s^{\scriptscriptstyle{3/2}})\|\boldsymbol{f}\|$$

for 0 < t, s, t+s < T and $f \in L^2(M, g)$.

(d) There exists a limit in operator norm $\lim_{k\to\infty} (H_{t/k})^k$ for any t>0, denoted by H_t , which forms with $H_0=Id$ a C^0 -semi group in

^{*)} Department of Mathematics, Tokyo Institute of Technology.

^{**)} Department of Mathematics, Keio University.