57. Conformally Related Product Riemannian Manifolds

By Yoshihiro TASHIRO and In-Bae KIM Department of Mathematics, Hiroshima University

(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1982)

Introduction. Let M and M^* be product Riemannian manifolds of dimension $n \ge 3$, and denote the structures by (M, g, F) and (M^*, g^*, G) respectively. The product structures F of M and G of M^* are different from the identity tensor I and satisfy the relations

 $F^2 = I$, $G^2 = I$,

$$g(FX, FX) = g(X, X), \qquad g^*(GX^*, GX^*) = g^*(X^*, X^*)$$

for any vector X of M and any vector X^* of M^* . The integrability conditions of F and G in M and M^* are

$$\nabla_x F = 0, \qquad \nabla^*_{x*} G = 0,$$

where we have denoted by V and V^* covariant differentiations with respect to g and g^* respectively. A conformal diffeomorphism f of M to M^* is characterized by the change

$$g^* = \rho^{-2}g$$

of the metric tensors, where ρ is a positive valued scalar field.

Under a diffeomorphism f of M to M^* , the image of a quantity on M^* by the induced map f^* of f will be denoted by the same character as the original. The structures F and G are said to be *commutative* with one another at a point P of M under f if FG=GF at P. In a previous paper [2], one of the present authors has proved the following

Theorem A. If both product Riemannian manifolds M and M^* are complete, then there is no global non-homothetic conformal diffeomorphism of M to M^* such that the product structures F and G are not commutative under it at a point of M.

As the contraposition of Theorem A, we can state

Theorem B. Let both product Riemannian manifolds M and M^* be complete. If there exists a global non-homothetic conformal diffeomorphism f of M onto M^* , then the diffeomorphism f has to make the product structures F and G commutative everywhere in M.

By virtue of Theorem B, we shall investigate product Riemannian manifolds admitting a global non-homothetic conformal diffeomorphism. The purpose of the present paper is to prove the following

Theorem. Let both M and M^* be complete, connected and simply connected product Riemannian manifolds of dimension $n \ge 3$. If there is a global non-homothetic conformal diffeomorphism f of M onto M^* ,

(0.1)