40. A Perturbation Theory for Abstract Evolution Equations of Second Order

By Michiaki WATANABE

Faculty of General Education, Niigata University

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1982)

1. Introduction. Let X be a Banach space with norm $\|\cdot\|$ and B(Y, X) be the totality of bounded linear operators mapping Y into X. A subset C(t), $t \in R$ of B(X, X) is called a strongly continuous cosine family in X if

(1) C(t+s)+C(t-s)=2C(t)C(s) for all $t, s \in R$; (2) C(0)=I;

(3) C(t)x is continuous in $t \in R$ for each fixed $x \in X$.

The associated sine family is given by

$$S(t)x = \int_0^t C(r)x dr$$

for $x \in X$ and $t \in R$. The infinitesimal generator is the operator $A: D(A) \rightarrow X$ defined by $Ax = \lim_{h \to 0} 2h^{-2}(C(h) - I)x$ for $x \in D(A)$, where $D(A) = \{x \in X: \lim_{h \to 0} h^{-2}(C(h) - I)x \text{ exists}\}$. It is well known that for $\lambda > \omega, \lambda^2$ belongs to the resolvent set of A and for $x \in X$

(4)
$$\lambda(\lambda^2 - A)^{-1} x = \int_0^\infty e^{-\lambda t} C(t) x dt,$$

where ω is a constant with $\omega \ge \log_e (1+2 \|C(1)\|)$. (See [1, p. 90].)

The cosine family in X with generator A is associated with the Cauchy problem for the abstract evolution equation of second order in X

(5) $d^2u/dt^2 = Au, \quad t \in R; \quad u(0) = u, \quad u'(0) = x.$

It is natural to try to convert (5) into a well-posed first order system

$$(6) \qquad \frac{d}{dt} \binom{u}{v} = \binom{0}{A} \binom{u}{v}, \quad t \in R; \quad \binom{u}{v} (0) = \binom{u}{x}$$

and to make use of the extensive theory of groups. (See, for example [6].)

For a strongly continuous cosine family C(t), $t \in R$ in X with the infinitesimal generator A, we are concerned with the set

 $E = \{x \in X; C(t)x \text{ is once continuously differentiable in } t \in R\}.$

Kisyński [2] proved the important facts that the set E under the norm $|u|_{E} = ||u|| + \max \{||C'(s)u|| : 0 \le s \le 1\}$

becomes a Banach space and that (5) can always be converted into the well-posed problem (6) in the Banach space $E \times X$.

In order to make this conversion more convenient we will, in this