86. On Richardson Classes of Unipotent Elements in Semisimple Algebraic Groups

By Takeshi HIRAI

Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1981)

Let G be a connected semisimple algebraic group over an algebraically closed field K of characteristic zero. Let P be a parabolic subgroup of G and U_P its unipotent radical. A unipotent class in G is called a Richardson class corresponding to P if it intersects U_P densely [6]. We study here the correspondence between Richardson classes and parabolic subgroups in detail. Note here that, as is shown in [3], we naturally encounter the notion of Richardson classes or more generally that of induced classes, in the study of Fourier transform of unipotent orbital integrals on a connected semisimple Lie group.

§ 1. Let g be the Lie algebra of G, h a Cartan subalgebra of g, Σ the root system of (g, h), Σ^+ the set of all positive roots in Σ , and Π the set of all simple roots. For a subset Γ of Π , we define a standard parabolic subgroup $P(\Gamma)$ of G as follows. Put $\Gamma^{\perp} = \{X \in h; \gamma(X) = 0 \ (\gamma \in \Gamma)\}$, and $L(\Gamma) = \{g \in G; \operatorname{Ad}(g)X = X \ (X \in \Gamma^{\perp})\}$. Further let $\langle \Gamma \rangle$ be the set of all roots in Σ expressed as integral linear combinations of $\gamma \in \Gamma$, U_{α} the one-dimensional unipotent subgroup corresponding to $\alpha \in \Sigma$, and $U(\Gamma)$ the subgroup generated by U_{α} 's for $\alpha \in \Sigma^+ - \langle \Gamma \rangle$. Then $P(\Gamma) = L(\Gamma)U(\Gamma)$ is a parabolic subgroup of G with a Levi subgroup $L(\Gamma)$ and the unipotent radical $U(\Gamma)$. Note that $\langle \Gamma \rangle$ is the root system of $L(\Gamma)$ and $\Sigma^+ - \langle \Gamma \rangle$ is the ideal $I(\Pi - \Gamma)$ of Σ^+ generated by $\Pi - \Gamma$ in the sense of [7, § 2].

For Γ , $\Gamma' \subset \Pi$, we define " $\Gamma \sim \Gamma'$ in Σ " if the Richardson classes corresponding to $P(\Gamma)$ and $P(\Gamma')$ coincide with each other. Remark that $\Gamma \sim \Gamma'$ here is equivalent to $I(\Pi - \Gamma) \sim I(\Pi - \Gamma')$ in [7, § 2].

Rewriting Theorem 1.7 in [5], we have the following.

Theorem 1 [5]. Let W be the Weyl group of the root system Σ , and let Γ , $\Gamma' \subset \Pi$. If $w\Gamma = \Gamma'$ for some $w \in W$, then $\Gamma \sim \Gamma'$.

We also have the following general theorem.

Theorem 2. Let Π_1 , Π_2 be two subsets of Π orthogonal to each other, and let Γ_i , Γ'_i be two subsets of Π_i for i=1, 2. Assume that $\Gamma_i \sim \Gamma'_i$ in the root system $\langle \Pi_i \rangle$ for i=1, 2. Then $\Gamma = \Gamma_1 \cup \Gamma_2 \sim \Gamma' = \Gamma'_1 \cup \Gamma'_2 \subset \Gamma' = \Gamma'_1 \cup \Gamma'_2 \cup \Gamma' = \Gamma'_1 \cup$

§ 2. We call a subsystem of the relations $\Gamma \sim \Gamma'$ in various (Π, Σ)