86. On Richardson Classes of Unipotent Elements in Semisimple Algebraic Groups

By Takeshi Hirai
Department of Mathematics, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1981)

Let G be a connected semisimple algebraic group over an algebraically closed field K of characteristic zero. Let P be a parabolic subgroup of G and U_{P} its unipotent radical. A unipotent class in G is called a Richardson class corresponding to P if it intersects U_{P} densely [6]. We study here the correspondence between Richardson classes and parabolic subgroups in detail. Note here that, as is shown in [3], we naturally encounter the notion of Richardson classes or more generally that of induced classes, in the study of Fourier transform of unipotent orbital integrals on a connected semisimple Lie group.
§ 1. Let \mathfrak{g} be the Lie algebra of G, \mathfrak{h} a Cartan subalgebra of \mathfrak{g}, Σ the root system of $(\mathfrak{g}, \mathfrak{h}), \Sigma^{+}$the set of all positive roots in Σ, and Π the set of all simple roots. For a subset Γ of Π, we define a standard parabolic subgroup $P(\Gamma)$ of G as follows. Put $\Gamma^{\perp}=\{X \in h ; \gamma(X)=0$ $(\gamma \in \Gamma)\}$, and $L(\Gamma)=\left\{g \in G ; \operatorname{Ad}(g) X=X\left(X \in \Gamma^{\perp}\right)\right\}$. Further let $\langle\Gamma\rangle$ be the set of all roots in Σ expressed as integral linear combinations of $\gamma \in \Gamma, U_{\alpha}$ the one-dimensional unipotent subgroup corresponding to α $\in \Sigma$, and $U(\Gamma)$ the subgroup generated by U_{α}^{\prime} s for $\alpha \in \Sigma^{+}-\langle\Gamma\rangle$. Then $P(\Gamma)=L(\Gamma) U(\Gamma)$ is a parabolic subgroup of G with a Levi subgroup $L(\Gamma)$ and the unipotent radical $U(\Gamma)$. Note that $\langle\Gamma\rangle$ is the root system of $L(\Gamma)$ and $\Sigma^{+}-\langle\Gamma\rangle$ is the ideal $I(\Pi-\Gamma)$ of Σ^{+}generated by $\Pi-\Gamma$ in the sense of $[7, \S 2]$.

For $\Gamma, \Gamma^{\prime} \subset \Pi$, we define " $\Gamma \sim \Gamma^{\prime}$ in Σ " if the Richardson classes corresponding to $P(\Gamma)$ and $P\left(\Gamma^{\prime}\right)$ coincide with each other. Remark that $\Gamma \sim \Gamma^{\prime}$ here is equivalent to $I(\Pi-\Gamma) \sim I\left(\Pi-\Gamma^{\prime}\right)$ in [7, § 2].

Rewriting Theorem 1.7 in [5], we have the following.
Theorem 1 [5]. Let W be the Weyl group of the root system Σ, and let $\Gamma, \Gamma^{\prime} \subset \Pi$. If $w \Gamma=\Gamma^{\prime}$ for some $w \in W$, then $\Gamma \sim \Gamma^{\prime}$.

We also have the following general theorem.
Theorem 2. Let Π_{1}, Π_{2} be two subsets of Π orthogonal to each other, and let $\Gamma_{i}, \Gamma_{i}^{\prime}$ be two subsets of Π_{i} for $i=1,2$. Assume that $\Gamma_{i} \sim \Gamma_{i}^{\prime}$ in the root system $\left\langle\Pi_{i}\right\rangle$ for $i=1,2$. Then $\Gamma=\Gamma_{1} \cup \Gamma_{2} \sim \Gamma^{\prime}=\Gamma_{1}^{\prime}$ $\cup \Gamma_{2}^{\prime}$ in $\Sigma=\langle\Pi\rangle$. Here $\Pi_{2}=\phi$ may be admitted.
$\S 2$. We call a subsystem of the relations $\Gamma \sim \Gamma^{\prime}$ in various (Π, Σ)

