17. Some Prehomogeneous Vector Spaces with Relative Invariants of Degree Four and the Formula of the Fourier Transforms

By Masakazu MURO

Department of Mathematics, Kochi University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1980)

In this article, we shall investigate the relative invariant f(x) of a regular prehomogeneous vector space (G, V) when it is one of the following ones; 1) $SL(6) \times GL(1)$ $(\Lambda_3 \times \Lambda_1)$, 2) $Sp(3) \times GL(1)$ $(\Lambda_3 \times \Lambda_1)$, 3) $Spin(12) \times GL(1)$ ((half-spin rep.) $\times \Lambda_1$), 4) $E_7 \times GL(1)$ ((56 dim. rep.) $\times \Lambda_1$), where Λ_i is the representation on the space of the skew-symmetric tensors of rank *i*. The polynomial f(x) has the following form, $(1) \qquad f(x) = (x_0y_0 - \langle X, Y \rangle)^2 + 4x_0N(Y) + 4y_0N(X) - 4\langle X^*, Y^* \rangle$.

Here, $x = (x_0, y_0, X, Y) \in C \oplus C \oplus C^m \oplus C^m$ and $\langle X, Y \rangle$ is some bilinear form in X and Y, N(X) is some polynomials in X, and $X \mapsto X^*$ is some polynomial mapping from the X-space into itself.

We shall calculate the Fourier transform of the hyperfunction $|f(x)|^s$ for a generic $s \in C$. As shown in [5], the formula of the Fourier transform gives the functional equation of the local zeta function associated with the prehomogeneous vector spaces.

1. Let u_1, \dots, u_6 be a basis of the six-dimensional complex vector space E with the natural action of $G = SL(6) \times GL(1)$, i.e., $(u_1, \dots, u_6) \mapsto C_2(u_1, \dots, u_6)^t g_1$ for $(g_1, c) \in SL(6) \times GL(1)$. We denote by V(20) the vector space of the skew-symmetric tensors on E of rank 3 and x_{ijk} denotes the coefficient of $u_i \wedge u_j \wedge u_k$. The complex algebraic group $SL(6) \times GL(1)$ acts on V(20), and it is a regular prehomogeneous vector space. We identify V(20) and $C \oplus C \oplus M(3, C) \oplus M(3, C)$ by

 $\begin{array}{c} x_{0} = x_{123} & y_{0} = x_{456} \\ X = \begin{pmatrix} x_{423}, x_{143}, x_{124} \\ x_{523}, x_{153}, x_{125} \\ x_{623}, x_{163}, x_{126} \end{pmatrix} & Y = \begin{pmatrix} x_{156}, x_{416}, x_{451} \\ x_{256}, x_{426}, x_{453} \\ x_{356}, x_{436}, x_{453} \end{pmatrix}. \\ \\ \end{array}$

By setting $\langle X, Y \rangle = \text{tr} (X \cdot Y)$, $N(X) = \det X$, and $X^* = \text{the cofactor}$ matrix of X, f(x) is an irreducible relatively invariant polynomial on the prehomogeneous vector space $(G, V) = (SL(6) \times GL(1), V(20))$ with the character $\chi(g_1, c) = c^{12}$. This is the prehomogeneous vector space 1). We define the symplectic group Sp(3) as the subgroup of SL(6) consisting of the elements which leave $u_1 \wedge u_4 + u_2 \wedge u_5 + u_3 \wedge u_6$ invariant. When we set

(3)
$$V(14) = \{(x_0, y_0, X, Y) \in V(20); {}^{t}X = X, {}^{t}Y = Y\},\$$

(2)