17. Some Prehomogeneous Vector Spaces with Relative Invariants of Degree Four and the Formula of the Fourier Transforms

By Masakazu Muro
Department of Mathematics, Kochi University
(Communicated by Kôsaku Yosida, m. J. A., Feb. 12, 1980)

In this article, we shall investigate the relative invariant $f(x)$ of a regular prehomogeneous vector space (G, V) when it is one of the following ones; 1) $\left.\left.\boldsymbol{S L}(6) \times G L(1)\left(\boldsymbol{\Lambda}_{3} \times \boldsymbol{\Lambda}_{1}\right), 2\right) S p(3) \times G L(1)\left(\Lambda_{3} \times \boldsymbol{\Lambda}_{1}\right), 3\right)$ $\boldsymbol{S p i n}(12) \times \boldsymbol{G L}(1)\left((\right.$ half-spin rep. $\left.\left.) \times \boldsymbol{\Lambda}_{1}\right), 4\right) \boldsymbol{E}_{7} \times \boldsymbol{G L}(1)\left((56 \mathrm{dim}\right.$. rep. $\left.) \times \boldsymbol{\Lambda}_{1}\right)$, where $\boldsymbol{\Lambda}_{i}$ is the representation on the space of the skew-symmetric tensors of rank i. The polynomial $f(x)$ has the following form, (1) $f(x)=\left(x_{0} y_{0}-\langle X, Y\rangle\right)^{2}+4 x_{0} N(Y)+4 y_{0} N(X)-4\left\langle X^{\#}, Y^{\#}\right\rangle$.

Here, $x=\left(x_{0}, y_{0}, X, Y\right) \in \boldsymbol{C} \oplus \boldsymbol{C} \oplus \boldsymbol{C}^{m} \oplus \boldsymbol{C}^{m}$ and $\langle X, Y\rangle$ is some bilinear form in X and $Y, N(X)$ is some polynomials in X, and $X \mapsto X^{\#}$ is some polynomial mapping from the X-space into itself.

We shall calculate the Fourier transform of the hyperfunction $|f(x)|^{s}$ for a generic $s \in C$. As shown in [5], the formula of the Fourier transform gives the functional equation of the local zeta function associated with the prehomogeneous vector spaces.

1. Let u_{1}, \cdots, u_{6} be a basis of the six-dimensional complex vector space \boldsymbol{E} with the natural action of $\boldsymbol{G}=\boldsymbol{S L}(6) \times \boldsymbol{G} \boldsymbol{L}(1)$, i.e., $\left(u_{1}, \cdots, u_{8}\right) \mapsto$ $C_{2}\left(u_{1}, \cdots, u_{6}\right)^{t} g_{1}$ for $\left(g_{1}, c\right) \in \boldsymbol{S L}(6) \times \boldsymbol{G L}(1)$. We denote by $\boldsymbol{V}(20)$ the vector space of the skew-symmetric tensors on E of rank 3 and $x_{i j k}$ denotes the coefficient of $u_{i} \wedge u_{j} \wedge u_{k}$. The complex algebraic group $\boldsymbol{S L}(6) \times \boldsymbol{G L}(1)$ acts on $V(20)$, and it is a regular prehomogeneous vector space. We identify $V(20)$ and $\boldsymbol{C} \oplus C \oplus M(3, C) \oplus M(3, C)$ by

$$
\begin{array}{ll}
x_{0}=x_{123} & y_{0}=x_{456} \tag{2}\\
X=\left(\begin{array}{ll}
x_{423}, x_{143}, x_{124} \\
x_{523}, x_{153}, x_{125} \\
x_{623}, x_{163}, x_{128}
\end{array}\right) & Y=\left(\begin{array}{l}
x_{156}, x_{416}, x_{451} \\
x_{256}, x_{422}, x_{452} \\
x_{356}, x_{486}, x_{453}
\end{array}\right) .
\end{array}
$$

By setting $\langle X, Y\rangle=\operatorname{tr}(X \cdot Y), N(X)=\operatorname{det} X$, and $X^{*}=$ the cofactor matrix of $X, f(x)$ is an irreducible relatively invariant polynomial on the prehomogeneous vector space $(\boldsymbol{G}, \boldsymbol{V})=(\boldsymbol{S L}(6) \times \boldsymbol{G} \boldsymbol{L}(1), \boldsymbol{V}(20))$ with the character $\chi\left(g_{1}, c\right)=c^{12}$. This is the prehomogeneous vector space 1). We define the symplectic group $S p(3)$ as the subgroup of $S L(6)$ consisting of the elements which leave $u_{1} \wedge u_{4}+u_{2} \wedge u_{5}+u_{3} \wedge u_{6}$ invariant. When we set

$$
\begin{equation*}
V(14)=\left\{\left(x_{0}, y_{0}, X, Y\right) \in V(20) ;{ }^{t} X=X,{ }^{t} Y=Y\right\} \tag{3}
\end{equation*}
$$

