87. Characteristic Cauchy Problems and Solutions of Formal Power Series

By Sunao Ouchi

Department of Mathematics, Jōchi (Sophia) University (Communicated by Kôsaku Yosida, M. J. A., Oct. 13, 1980)

§ 1. Introduction. Let C^{n+1} be the (n+1)-dimensional complex space. $z=(z_0,z')=(z_0,z_1,\cdots,z_n)$ denotes its point and $\xi=(\xi_0,\xi')=(\xi_0,\xi_1,\cdots,\xi_n)$ denotes its dual variable. We shall make use of the notation $\partial_z=(\partial_{z_0},\partial_{z'})=(\partial_{z_0},\partial_{z_1},\cdots,\partial_{z_n}), \ \partial_{z_i}=\partial/\partial z_i$. For a linear partial differential operator $a(z,\partial_z),\ a(z,\xi)$ denotes its total symbol. Now let us consider Cauchy problem in a neighbourhood Ω of z=0,

(C.P)
$$\begin{cases} L(z, \partial_z)u(z) = ((\partial_{z_0})^k - A(z, \partial_z))u(z) = f(z), \\ (\partial_{z_0})^i u(0, z') = \hat{u}_i(z'), & 0 \le i \le k-1, \end{cases}$$

where

$$(1.1) A(z,\partial_z) = \sum_{i=0}^{k-1} A_i(z,\partial_{z'})(\partial_{z_0})^i$$

and $A(z, \hat{\sigma}_z)$ is an operator of order m and its coefficients and f(z) are holomorphic in Ω and $\hat{u}_i(z')$ $(0 \le i \le k-1)$ are holomorphic in $\Omega' = \Omega$ $\cap \{z_0 = 0\}$. We can easily find out a solution of formal power series $\hat{u}(z)$ of (C.P) of the form

(1.2)
$$\hat{u}(z) = \sum_{n=0}^{\infty} \hat{u}_n(z')(z_0)^n / n!.$$

 $\hat{u}_n(z')$ $(n \ge k)$ are successively and uniquely determined from (C.P). It follows from well-known Cauchy-Kovalevskaja theorem that whenever $m \le k$, $\hat{u}(z)$ converges and is a unique holomorphic solution of (C.P).

The purpose of this paper is to give an anlytical interpretation of $\hat{u}(z)$, that is, existence of a solution $u_s(z)$ of the equation $L(z, \hat{\sigma}_z)u_s(z) = f(z)$ with the asymptotic expansion $\hat{u}(z)$ in a sector S, when m > k. So we assume m > k in the following.

§ 2. Characteristic indices. In § 2 we introduce a new notation, characteristic indices. Let us write $A(z, \partial_z)$ in the form different from (1.1),

$$(2.1) A(z,\partial_z) = \sum_{i=0}^m \left(\sum_{l=s_i}^i a_{i,l}(z,\partial_{z'})(\partial_{z_0})^{i-l} \right),$$

where $a_{i,l}(z,\xi')$ is a homogeneous polynomial of ξ' with degree l and if $a_{i,l}(z,\xi')\equiv 0$ for all l, we put $s_i=+\infty$. We expand $a_{i,l}(z,\xi')$ at $z_0=0$ with respect to z_0 ,

(2.2)
$$a_{i,t}(z,\xi') = \sum_{j=0}^{\infty} a_{i,t,j}(z',\xi')(z_0)^j.$$

Put