5. On the Microlocal Structure of a Regular Prehomogeneous Vector Space Associated with GL(8)

By Ikuzō Ozeki
The School for the Blind Attached to Tsukuba University, Tokyo
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1980)

Let $V(n)$ be the n-dimensional vector space over C spanned by u_{1}, \cdots, u_{n}. Then the general linear group $G L(n)$ acts on $V(n)$ by $\rho_{1}(g)\left(u_{1}\right.$, $\left.\cdots, u_{n}\right)=\left(u_{1}, \cdots, u_{n}\right) g$ for $g \in G L(n)$.

Let V be the vector space spanned by skew-tensors $u_{i} \wedge u_{j} \wedge u_{k}$ ($1 \leq i<j<k \leq n$) of degree three. Then the action $\rho=\Lambda_{3}$ of $G L(n)$ on V is given by $\rho(g)\left(u_{i} \wedge u_{j} \wedge u_{k}\right)=\rho_{1}(g) u_{i} \wedge \rho_{1}(g) u_{j} \wedge \rho_{1}(g) u_{k}$. The triplet ($G L(n)$, Λ_{3}, V) is a regular prehomogeneous vector space if and only if $n=3,6$, 7 or 8 (see [1]). For the case $n=3,6$ or 7 , its microlocal structure has been investigated in [2]. In this article, we study the remaining case, i.e., $n=8$. We use the same notations as in [3].

A brief sketch of the present article and [3] had been given in [6].
§ 1. The orbits. The orbital decomposition of this space ($G L(8)$, Λ_{3}, V) was completed by Gurevich (see [4]). A representative point of each orbit is given in Table I.

Table I. Representative points of the orbits and their isotropy subgroups

Numbers	Representative points	Isotropy subgroups
0,56	$123+147+148+257+368+456$	$S L(3)$
1,40	$4\langle 148\rangle-8\langle 157\rangle-2\langle 238\rangle+247$	$(S L(2) \times G L(1)) \cdot\left(G_{a}\right)^{5}$
	$+4\langle 256\rangle-2\langle 346\rangle$	$\left(S L(2) \times G L(1)^{2}\right) \cdot U(6)$
3,31	$138+167+247-256+345$	$G L(1)^{3} \cdot U(9)$
4,25	$136+147+236-258-345$	$\left(S L(2) \times G L(1)^{2}\right) \cdot U(9)$
6,21	$127-156+236-245-348$	$\left(S L(2)^{3} \times G L(1)\right) \cdot\left(G_{a}\right)^{6}$
8,24	$134+156+234+278$	$(S L(2) \times G L(1)) \cdot U(12)$
8,16	$128+147-156-237+246+345$	$\left(S L(2)^{2} \times G L(1)^{2}\right) \cdot U(9)$
9,18	$136-145+234+278$	$\left(S L(2) \times G L(1)^{2}\right) \cdot U(13)$
10,13	$128-137+156-246+345$	$\left(S L(2)^{2} \times G L(1)^{2} \cdot\left(G G_{a} 1^{12}\right.\right.$
12,12	$136+147-235+248$	$(S L(2) \times G L(1)) \cdot U(17)$
13,10	$128-137+146+236-245$	$\left(G_{2} \times G L(1)\right) \cdot\left(G_{a}\right)^{7}$
14,28	$125+136+147+234+567$	$(S L(3) \times S p(2) \times G L(1)) \cdot\left(G_{a}\right)^{4}$
$15,15^{\prime}$	$157+168+234$	$\left(S L(2)^{2} \times G L(1)^{2}\right) \cdot U(15)$
$15^{\prime}, 15$	$127+136+246+345$	$\left(S L(2)^{2} \times G L(1)^{2}\right) \cdot U(16)$
16,8	$128-137+156+234$	$\left(S L(2)^{2} \times G L(1)^{3}\right) \cdot U(17)$
18,9	$127+134-256$	

