19. Finitely Additive Measures on \mathbf{N}

By Masahiro Yasumoto
Department of Mathematics, Nagoya University
(Communicated by Kôsaku Yosida, M. J. A., March 12, 1979)

1. Introduction. In this paper, we improve the theorem of Jech and Prikry [2] on projections of finitely additive measures. Let N denote the set of all natural numbers. A (finitely additive) measure on N is a function $\mu: P(N) \rightarrow[0,1]$ such that $\mu(\phi)=0, \mu(N)=1$ and if X and Y are disjoint subsets of N, then $\mu(X \cup Y)=\mu(X)+\mu(Y) . \quad \mu$ is nonprincipal if $\mu(E)=0$ for every finite set $E \subset N$. Let $F: N \rightarrow N$ be a function. If μ is a measure on N, then $\nu=F^{*}(\mu)$ (the projection of μ by F) is the measure defined by $\nu(X)=\mu\left(F^{-1}(X)\right)$.

Theorem (Jech and Prikry). There exist a measure μ on N and a function $F: N \rightarrow N$ such that
a) $F^{*}(\mu)=\mu$,
b) if $X \subseteq N$ is such that F is one-to-one on X, then $\mu(X) \leqq \frac{1}{2}$.

A measure is two-valued if the values is $\{0,1\}$. The theorem of Jech and Prikry contrasts with the following theorem concerning two-valued measure (Frolik [1] and Rudin [3]) :

If μ is a two-valued measure and $F: N \rightarrow N$ is such that $F^{*}(\mu)=\mu$, then $F(x)=x$ on a set of measure 1.

In this paper we prove the following
Theorem. There exist a measure μ and a function $F: N \rightarrow N$ such that
a) $F^{*}(\mu)=\mu$,
b) if $X \subseteq N$ is such that F is one-to-one on X, then $\mu(X)=0$.
2. Sketch of the proof. We shall now state two results, to be proved in the following sections. We shall indicate how Theorem follows from them.

Proposition 1. For any prime p, there exist a function $F_{p}: N$ $\rightarrow \boldsymbol{N}$ and a finitely additive measure η_{p} such that

1) $F_{p}^{*}\left(\eta_{p}\right)=\eta_{p}$,
2) if $X \subseteq N$ is such that F_{p} is one-to-one on X, then $\eta_{p}(X) \leqq 1 /$ ($p-1$).

Proposition 2. There exists a function $f_{p}: N \xrightarrow[\text { onto }]{1 ; 1} N$ such that $f_{p} F_{3}^{-1}=F_{p}^{-1} f_{p}$ where F_{3} and F_{p} are the functions in Proposition 1.

We let $F=F_{3}$ and $\lambda_{p}(X)=\eta_{p}\left(f_{p}(X)\right)$ where $f_{p}(X)=\left\{f_{p}(x) \mid x \in X\right\}$.

