16. The Implicit Function Theorem for Ultradifferentiable Mappings

By Hikosaburo KOMATSU Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1979)

Let M_p , $p=0, 1, 2, \cdots$, be a sequence of positive numbers. An infinitely differentiable function f on an open set U in \mathbb{R}^n is said to be an *ultradifferentiable function of class* $\{M_p\}$ (resp. of class (M_p)) if for each compact set K in U there are constants h and C (resp. and each h>0 there is a constant C) such that

 $\sup_{x\in K} |D^{\alpha}f(x)| \leq Ch^{|\alpha|} M_{|\alpha|}, \qquad |\alpha|=0, 1, 2, \cdots.$

A mapping $F = (f_1, \dots, f_m)$ from an open set U in \mathbb{R}^n into \mathbb{R}^m is said to be *ultradifferentiable of class* $\{M_p\}$ (resp. (M_p)) if all components f_i are ultradifferentiable functions of class $\{M_p\}$ (resp. (M_p)).

We assume that M_p satisfies the following conditions:

(1) $M_0 = M_1 = 1;$ There is a constant H such that (2) $(M_q/q!)^{1/(q-1)} \leq H(M_p/p!)^{1/(p-1)}, \quad 2 \leq q \leq p;$ Furthermore in case of class (M_p) (3) $\frac{M_p}{pM_{p-1}} \rightarrow \infty \quad \text{as} \quad p \rightarrow \infty.$

Then we have

The inverse mapping theorem. If $F = (f_1, \dots, f_n)$ is an ultradifferentiable mapping of class $\{M_p\}$ (resp. (M_p)) from an open set U in \mathbb{R}^n into an open set V in \mathbb{R}^n and if the Jacobian

$$\frac{\partial(f_1, \cdots, f_n)}{\partial(x_1, \cdots, x_n)} = \det\left(\frac{\partial f_i}{\partial x_j}\right)$$

does not vanish at x^0 in U, then there exist an open neighborhood U_0 of x^0 in U and an open neighborhood V_0 of $y^0 = F(x^0)$ in V such that Frestricted to U_0 is a homeomorphism onto V_0 and the inverse on V_0 is an ultradifferentiable mapping of class $\{M_p\}$ (resp. (M_p)).

Proof. By the inverse mapping theorem for C^{∞} mappings there are open neighborhoods U_0 and V_0 such that $F: U_0 \rightarrow V_0$ is a C^{∞} diffeomorphism. We may assume that the inverse matrix of $(\partial f_i/\partial x_j)$ is uniformly bounded on U_0 . To estimate the derivatives of the inverse mapping $F^{-1} = (g_1, \dots, g_n): V_0 \rightarrow U_0$, we assume that 0 is an arbitrary point in U_0 and F maps it to 0 in V_0 .

Let (a_{ij}) be the inverse matrix of $(\partial f_i / \partial x_j)$ at 0 in U_0 . We set