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1. Introduction. M. Numata [1] proved that the nilpotent length
of a finite solvable group is at most one plus the number of conjugate
classes of the non-normal maximal subgroups.

In this paper we shall prove the following two theorems. One of
them partially extends Numata’s result.

Theorem 1. Suppose every non-normal maximal subgroup of a
finite group G has the same order. Then G is solvable and the nilpotent
length of G is at most two.

Theorem 2. The number of conjugate classes of maximal sub-
groups of a finite non-abelian simple group is at least three.

Alternating group A, has just three conjugate classes of maximal
subgroups of it. So the number three in Theorem 2 is best possible.
An example related to Theorem 2 is found in the paper [2] due to
Goldschmidt, which gives a group-theoretic proof of Burnside’s
theorem concerning the solvability of groups of order p%g® for odd
primes p, q. In the paper it is shown that if G is a minimal counter
example, then G is simple and the number of conjugate classes of
maximal subgroups of G is two. Hence the proof may also be com-
pleted by Theorem 2.

2. Proof of the theorems. Let G be a permutation group on 2,
denoted by G*, and H be a subgroup of G. We denote by I(H) a set
of the points of 2 left fixed by H. We need the following well-known
lemma, which is proved by using Witt’s lemma [3, P 20], and Lemma
6 of [4].

Lemma. Let G be a transitive permutation group on 2 and p be
a prime. Suppose P is a p-subgroup of G of maximal order which
fixes at least two points. Then N4(P) is transitive on I(P).

Proof of Theorem 1. We may suppose that there exists a non-
normal maximal subgroup H in G. Let p be a prime dividing |G : H|
and let P be a Sylow p-subgroup of G. If G=N4(P), then there exists
a maximal subgroup L such the L>=N;(P). Since L>=N,(P), we obtain
L=Ng(L) and so L is a non-normal maximal subgroup of G. Hence
|L|=|H|, contrary to our choice of p. Consequently G[>P. Let L=L/P
be any maximal subgroup of G=G/P. Since p does not divide |G: L|,



