62. On the Number of Conjugate Classes of Maximal Subgroups in Finite Groups

By Mikio Kano

Department of Mathematics, Akashi Technological College (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1979)

1. Introduction. M. Numata [1] proved that the nilpotent length of a finite solvable group is at most one plus the number of conjugate classes of the non-normal maximal subgroups.

In this paper we shall prove the following two theorems. One of them partially extends Numata's result.

Theorem 1. Suppose every non-normal maximal subgroup of a finite group G has the same order. Then G is solvable and the nilpotent length of G is at most two.

Theorem 2. The number of conjugate classes of maximal subgroups of a finite non-abelian simple group is at least three.

Alternating group A_5 has just three conjugate classes of maximal subgroups of it. So the number three in Theorem 2 is best possible. An example related to Theorem 2 is found in the paper [2] due to Goldschmidt, which gives a group-theoretic proof of Burnside's theorem concerning the solvability of groups of order p^aq^b for odd primes p,q. In the paper it is shown that if G is a minimal counter example, then G is simple and the number of conjugate classes of maximal subgroups of G is two. Hence the proof may also be completed by Theorem 2.

2. Proof of the theorems. Let G be a permutation group on Ω , denoted by G^o , and H be a subgroup of G. We denote by I(H) a set of the points of Ω left fixed by H. We need the following well-known lemma, which is proved by using Witt's lemma [3, P 20], and Lemma 6 of [4].

Lemma. Let G be a transitive permutation group on Ω and p be a prime. Suppose P is a p-subgroup of G of maximal order which fixes at least two points. Then $N_G(P)$ is transitive on I(P).

Proof of Theorem 1. We may suppose that there exists a non-normal maximal subgroup H in G. Let p be a prime dividing |G:H| and let P be a Sylow p-subgroup of G. If $G \geq N_G(P)$, then there exists a maximal subgroup L such the $L \geq N_G(P)$. Since $L \geq N_G(P)$, we obtain $L = N_G(L)$ and so L is a non-normal maximal subgroup of G. Hence |L| = |H|, contrary to our choice of p. Consequently $G \triangleright P$. Let $\overline{L} = L/P$ be any maximal subgroup of $\overline{G} = G/P$. Since p does not divide |G:L|,