25. On Zariski Problem

By Takao Fujita
Department of Mathematics, College of General Education, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., March 12, 1979)

In this note we generalize a result of Zariski [8, § 7]. As an application, using the theory of Miyanishi [5], [6], we prove the following

Theorem. Let S be a surface defined over a field k of characteristic zero such that $S \times A^{1} \cong A^{3}$. Then $S \cong A^{2}$.

Namely the so-called Zariski problem is solved in the affirmative way. Our method of proof will work also in positive characteristic cases provided that there is a sufficiently powerful analogue of the theory of Iitaka [1], [2]. It should be emphasized that the theory of Miyanishi plays a very important role in our proof.
§ 1. Zariski decomposition of pseudo effective line bundles. Let S be a complete non-singular surface defined over an algebraically closed field k of any characteristic. Prime divisor means an irreducible reduced curve on S.
(1.1) A linear combination of prime divisors with coefficients in the rational number field \boldsymbol{Q} is called a \boldsymbol{Q}-divisor. A \boldsymbol{Q}-divisor is said to be effective if each coefficient is non-negative.
(1.2) An element of $\operatorname{Pic}(S) \otimes \boldsymbol{Q}$ is called a \boldsymbol{Q}-line bundle. Any \boldsymbol{Q} divisor D defines naturally a Q-line bundle, which is denoted by D by abuse of notation. For any \boldsymbol{Q}-line bundles F_{1} and F_{2}, we define the intersection number $F_{1} F_{2} \in \boldsymbol{Q}$ in the obvious way.
(1.3) A \boldsymbol{Q}-line bundle H is said to be semi-positive if $H C \geqq 0$ for any prime divisor C. Then, obviously, $H E \geqq 0$ for any effective Q divisor E.
(1.4) Lemma. Let H be a semipositive Q-line bundle and let E be an effective Q-divisor. If $(H+E) C_{i} \geqq 0$ for each prime component C_{i} of E, then $(H+E)$ is semipositive.

Proof is easy.
(1.5) A Q-line bundle L is said to be pseudo effective if $L H \geqq 0$ for any semipositive \boldsymbol{Q}-line bundle H. Clearly any effective \boldsymbol{Q}-divisor is pseudo effective.
(1.6) Let C_{1}, \cdots, C_{q} be prime divisors. By $V\left(C_{1}, \cdots, C_{q}\right)$ we denote the \boldsymbol{Q}-vector space of \boldsymbol{Q}-divisors generated by $C_{1}, \cdots, C_{q} . \quad I\left(C_{1}\right.$, $\left.\cdots, C_{q}\right)$ denotes the quadratic form on $V\left(C_{1}, \cdots, C_{q}\right)$ defined by the self intersection number.

