21. The Groups $J_{g}(*)$ for Compact Abelian Topological Groups G^{*}

By Katsuo KAWAKUBO Universität Bonn and Osaka University

(Communicated by Kunihiko KODAIRA, M. J. A., March 13, 1978)

§1. Introduction. In [4], we defined $J_G(X)$ for a compact group G and for a compact G-space X. When X is a point, we denote it by $J_G(*)$. Similar groups JO(G) were defined and studied by Atiyah and Tall [2], Snaith [7], and Lee and Wasserman [5]. Our definition is more rigid than those of JO(G) in [2], [5], [7] and is given from the geometrical point of view as follows.

Two orthogonal representation spaces V, W of a compact topological group G are said to be *J*-equivalent if there exist an orthogonal representation space U and a *G*-homotopy equivalence $f: S(V \oplus U)$ $\rightarrow S(W \oplus U)$ where $S(V \oplus U)$ and $S(W \oplus U)$ denote the unit spheres in $V \oplus U$ and $W \oplus U$ respectively. Then the group $J_G(*)$ is defined as the quotient of the orthogonal representation ring RO(G) by the the subgroup

 $T_{g}(*) = \{V - W | V \text{ is } J \text{-equivalent to } W\}.$

The natural epimorphism $RO(G) \rightarrow J_G(*)$ is also denoted by J_G .

The purpose of the present paper is to announce the group structure of $J_G(*)$ for G an arbitrary compact abelian topological group (Theorem 1).

In a forthcoming paper, we shall study $J_G(*)$ for G an arbitrary *p*-group.

The full exposition and proofs will also appear later.

§2. The groups $J'_{Z_n}(*)$. Let *n* be an integer greater than one and $n=2^k \cdot p_1^{r(1)} \cdots p_t^{r(k)}$ be the prime decomposition of *n*. Denote by Z_n the cyclic group Z/nZ of order *n*. Then we define a group $J'_{Z_n}(*)$ as follows.

Case 1. $k \ge 2$. We set

$$J'_{Z_n}(*) = Z \oplus Z_{2^{k-2}} \oplus \bigoplus_{i=1}^{t} Z_{(p_i^{r(i)} - p_i^{r(i)-1})}$$

Case 2. k=0 or 1. we set

$$J'_{Z_n}(*) = Z \oplus \left\{ \bigoplus_{i=1}^{t} Z_{(p_i^{r(i)} - p_i^{r(i)} - 1)} \right\} / Z_2$$

where the inclusion of Z_2 into

^{*)} Research partially supported by S. F. B. grant Bonn and Fūjukai grant.