49. Examples of Obstructed Holomorphic Maps

By Takao AKAHORI and Makoto NAMBA Ryūkyū University and Tohoku University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1978)

1. By a complex space, we mean a reduced, Hausdorff, complex analytic space. For a complex manifold X, the set S(X) of all compact complex submanifolds of X has a complex space structure (Douady [1]). For $V \in S(X)$, dim $T_V S(X) \leq \dim H^0(V, \mathcal{O}(N))$, where $T_V S(X)$ is the Zariski tangent space to S(X) at V and $\mathcal{O}(N)$ is the sheaf of sections of the normal bundle N along V (see Namba [4]). We say that V is unobstructed relative to X if S(X) is non-singular at V and dim $T_V S(X) = \dim H^0(V, \mathcal{O}(N))$. Otherwise, V is said to be obstructed relative to X. If $H^1(V, \mathcal{O}(N))=0$, then V is unobstructed relative to X (Kodaira [2]). Examples of obstructed submanifolds were given by Zappa [5] and Mumford [3].

Now, let V and W be compact complex manifolds. Then, the set Hol (V, W) of all holomorphic maps of V into W is a complex space. In fact, by identifying $f \in \text{Hol}(V, W)$ with the graph $\Gamma_f \subset V \times W$, Hol (V, W) is regarded as an open subspace of $S(V \times W)$. Note that the normal bundle along Γ_f is canonically isomorphic to the pull back f^*TW over f of the tangent bundle TW of W. We say that $f \in \text{Hol}(V, W)$ is unobstructed if the graph Γ_f is unobstructed relative to $V \times W$. Otherwise, f is said to be obstructed. It seems that no example of obstructed holomorphic maps is known. The purpose of this note is to give such examples.

2. Let V be a compact Riemann surface of genus g. Let P^1 be the complex projective line. Then Hol (V, P^1) is nothing but the set of all meromorphic functions on V. It is divided into open (and closed) subspaces:

Hol $(V, P^1) = \text{Const} \cup R_1(V) \cup R_2(V) \cup \cdots,$

where Const is the set of all constant functions and $R_n(V)$ is the set of all meromorphic functions on V of (mapping) order n. If $n \ge g+1$, then $R_n(V)$ is non-empty. If $n \ge g$, then every $f \in R_n(V)$ is unobstructed so that $R_n(V)$ is non-singular and of dimension 2n+1-g. This follows from the fact that $f^*TP^1 = [2D_{\infty}(f)]$, where $D_{\infty}(f)$ is the polar divisor of f and $[2D_{\infty}(f)]$ is the line bundle determined by the divisor $2D_{\infty}(f)$.

Theorem. For $f \in R_{g-1}(V)$, assume that $[2D_{\infty}(f)] = K_{V}$ (the canonical bundle of V). Then f is unobstructed if and only if