23. Boundary Value Problem on Symmetric Homogeneous Spaces

By Toshio OSHIMA*) and Jiro SEKIGUCHI**)

(Communicated by Kôsaku YosIDA, M. J. A., June 14, 1977)

1. Introduction. Any eigenfunction of all invariant differential operators on a Riemannian symmetric space can be represented by the Poisson integral of a hyperfunction on its Martin boundary (cf. [2], [3]). We can also formulate a boundary value problem for a little wider class of (not necessarily Riemannian) symmetric spaces. For examples: $SL(n, \mathbf{R})/SO(p, n-p)$, $Sp(n, \mathbf{R})/U(p, n-p)$, $Sp(n, \mathbf{R})/GL(n, \mathbf{R})$. Our theorem in this paper is a natural generalization of the result in [2] and [3] under a certain mild condition.

2. Notation. Let G be a connected real semisimple Lie group with finite center, K a maximal compact subgroup of G. Let g be the Lie algebra of G, t the Lie subalgebra of K in g. Let θ be the compatible Cartan involution of g. Let a be a maximal abelian subspace in $\mathfrak{p} = \{X \in \mathfrak{g}; \theta(X) = -X\}$, \mathfrak{a}^* its dual and $\mathfrak{a}_{\mathcal{E}}^*$ the complexification of \mathfrak{a}^* . Let Σ be the restricted root system of $(\mathfrak{g}, \mathfrak{a})$ and let us introduce an order in Σ . We denote by $\Psi = \{\alpha_1, \dots, \alpha_l\}$ the set of positive simple roots in this order. Put $\mathfrak{g}^{\mathfrak{a}} = \{X \in \mathfrak{g}; [H, X] = \alpha(H)X$ for any H in $\mathfrak{a}\}$ and let us denote by ρ one-half of the sum of positive roots. Furthermore, let G = KAN be the compatible Iwasawa decomposition, M the centralizer of \mathfrak{a} in K, M* the normalizer of \mathfrak{a} in K, and m and n the Lie algebras of M and N, respectively. The quotient group $W = M^*/M$ is called the Weyl group.

3. Preliminary results. We will define the symmetric space G/K, where we will investigate simultaneous eigenfunctions of the invariant differential operators.

Definition 1. We call the mapping $\varepsilon: \Sigma \rightarrow \{-1, 1\}$ a signature of roots if the followings are satisfied.

(i) $\varepsilon(\alpha_i) \in \{-1, 1\}$ for $\alpha_i \in \Psi$.

(ii) $\varepsilon(\alpha) = \varepsilon(\alpha_1)^{m_1} \cdots \varepsilon(\alpha_l)^{m_l}$ for $\alpha = \sum_{i=1}^l m_i \alpha_i \in \Sigma$.

For a given signature ε , we can associate an involutive automorphism θ_{ε} of g by the following:

Definition 2. We define the involutive automorphism θ_{\bullet} of g so that the conditions

^{*)} Department of Mathematics, University of Tokyo.

^{**)} Department of Mathematics, Kyoto University.