11. On the Acyclicity of Free Cobar Constructions. I

Ву Казиніко Аомото

(Communicated by Kunihiko KODAIRA, M. J. A., April 12, 1977)

1. Let Λ be a group ring or an enveloping algebra of Lie algebras over Z with an augmentation $\varepsilon \colon \Lambda \to Z \to (0)$. Let (X, ∂) be a complex of left Λ -modules

(1.1) $\longrightarrow X_p \xrightarrow{\partial_p} X_{p-1} \xrightarrow{\partial_{p-1}} \cdots \longrightarrow X_1 \xrightarrow{\partial_1} \Lambda \xrightarrow{\varepsilon} Z \longrightarrow (0)$ where each X_p is a free left Λ -module and each ∂_p is a left Λ -module homomorphism. Let Λ^f be a free associative algebra over Z such that we get an exact sequence

$$(1.2) \qquad \qquad (0) \longrightarrow L \xrightarrow{\iota_0} \Lambda^f \longrightarrow \Lambda \longrightarrow (0)$$

where L denotes an ideal of Λ^{f} . First we assume

Assumption 1. i) There exist two sequences (X^{f}, ∂^{f}) and $(L \otimes_{A^{f}} X^{f}, 1 \otimes \partial^{f})$ of left Λ^{f} -modules on the augmentation ε^{f} ,

(1.3) $(0) \longrightarrow (\Lambda^{f})^{+} \longrightarrow \Lambda^{f} \xrightarrow{\varepsilon^{f}} Z \longrightarrow (0)$ such that the following diagram commutes:

where each κ_p denotes an epimorphism as left modules and each X_p or X_p^f is isomorphic to the tensor product $\Lambda \otimes S_p$ or $\Lambda^f \otimes S_p$ respectively for a free abelian group S_p such that $L = X_2^f \otimes \Lambda^f$.

ii) ∂_p^f are all injective on X_p^f , $p \ge 1$.

Let \dot{X}^{f} be the direct sum $\bigoplus_{p=2}^{\infty} X_{p}^{f} \oplus (\Lambda^{f})^{+}$ and $T(\dot{X}^{f})$ be the tensor algebra of \dot{X}^{f} denoted by A. A becomes a free graded algebra $\bigoplus_{s=0}^{\infty} A_{s}$, where A_{s} is spanned by the elements of the form $u_{1}u_{2}\cdots u_{m-1}u_{m}$, $u_{j} \in X_{p_{j}}^{f}$ $(p_{j} \geq 2), j \leq m-1$, and $u_{m} \in \Lambda^{f}$ such that $s = \sum_{j=1}^{m-1} (p_{j}-1)$.

We introduce a lexicographic order into a basis of A: Let $\{u_r^p, \gamma \in \Gamma_p\}$ be an ordered basis of S_{p+1} , $p \ge 1$ and $\{u_r^0, \gamma \in \Gamma_0\}$ be an ordered system