58. Studies on Holonomic Quantum Fields. V

By Mikio SATO, Tetsuji MIWA, and Michio JIMBO Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1977)

This is a continuation of the series of our notes [1].

Here we shall give a summary of the theory of Clifford group. As for details see [2]. We remark that we have changed the definition of T_g and nr (g) which was given in [1].

1. Norms and rotations. Let W be an N dimensional vector space over C. We set $W^* = \operatorname{Hom}_{\mathcal{C}}(W,C) = \{\eta \mid \eta \colon W \to C, w \mapsto \eta(w)\}$. Let $\Lambda(W) = \bigoplus_{\mu=0}^N \Lambda^{\mu}(W)$ denote the exterior algebra over W. We denote by δ the linear homomorphism $\delta \colon W^* \to \operatorname{End}_{\mathcal{C}}(\Lambda(W)), \eta \mapsto \delta_{\eta}$ which satisfies $\delta_{\eta}(1) = 0$ and $\delta_{\eta}(wa) = \eta(w)a - w\delta_{\eta}(a)$ for $w \in W$ and $a \in \Lambda(W)$. Let κ be an element of $\operatorname{Hom}_{\mathcal{C}}(W,W^*)$ such that $\iota = \kappa + {}^{\iota}\kappa$ is invertible. An orthogonal structure is introduced to W by the inner product $\langle w, w' \rangle = \iota(w)(w') = \iota(w')(w)$. We denote by $\Lambda(W)$ the Clifford algebra over the orthogonal space W thus obtained.

There exists a unique linear isomorphism

(1.1)
$$\operatorname{Nr}_{\epsilon}: A(W) \to \Lambda(W), \quad a \mapsto \operatorname{Nr}_{\epsilon}(a)$$

which satisfies $Nr_{\epsilon}(1)=1$ and

(1.2)
$$\operatorname{Nr}_{\kappa}(wa) = w \operatorname{Nr}_{\kappa}(a) + \delta_{\kappa(w)}(\operatorname{Nr}_{\kappa}(a)).$$

We call $Nr_{\kappa}(a)$ the κ -norm of a. The constant term of $Nr_{\kappa}(a)$ is called the κ -expectation value and is denoted by $\langle a \rangle_{\kappa}$.

There exists a unique automorphism $a\mapsto \varepsilon(a)$ (resp. anti-automorphism $a\mapsto a^*$) of A(W) characterized by $\varepsilon(w)=-w$ (resp. $w^*=w$) for $w\in W$. We denote by G(W) the Clifford group $\{g\in A(W)|^{\frac{1}{2}}g^{-1}\in A(W), gW\varepsilon(g)^{-1}=W\}$. We denote by T the group homomorphism $T:G(W)\to O(W), g\mapsto T_g$ defined by $T_g(w)=gw\varepsilon(g)^{-1}$ for $w\in W$. Then we have the following exact sequence.

$$(1.3) 1 \longrightarrow GL(1, \mathbb{C}) \xrightarrow{\mathrm{id.}} G(W) \xrightarrow{T} O(W) \longrightarrow 1.$$

A group homomorphism $\operatorname{nr}: G(W) \to \operatorname{GL}(1, \mathbb{C}), g \mapsto \operatorname{nr}(g)$ is defined by $\operatorname{nr}(g) = g\varepsilon(g)^*$, which is called the spinorial norm of g.

In what follows we shall adopt the following identifications: $\operatorname{Hom}_{\mathcal{C}}(W_1 \otimes_{\mathcal{C}} W_2, \mathcal{C}) \cong W_2^* \otimes_{\mathcal{C}} W_1^* \cong \operatorname{Hom}_{\mathcal{C}}(W_1, W_2^*).$

If $g \in G(W)$, we have

(1.4)
$$\langle g \rangle_{\kappa}^2 = \operatorname{nr}(g) \det((\kappa T_g + {}^t\kappa)\iota^{-1}).$$

If $\langle g \rangle_{\kappa} \neq 0$, we have

(1.5)
$$\operatorname{Nr}_{s}(g) = \langle g \rangle_{s} \exp(\rho_{g}/2)$$