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1. Introduction. Consider the homogeneous linear differential
equation
(1) t=A(t)x (x: n-vector)
where the coefficient 7 xn matrix A(f) is continuously differentiable
in an interval I=[0, 4+oc0). In this paper, we shall study the relations
between the stability of the system (1) and the characteristic roots of
the time-variant coefficient matrix A(¢), of which all characteristic
roots are constant.

Throughout this paper, we use the vector Euclidean norm | z||
=437 |%;F and the induced matrix norm ||A||=§,1“111 1Az

Moreover, the definitions of stability, asymptotic stability and
instability are the same as given in W. A. Coppel [1].

2. Theorem. We shall give a theorem, which was proved by the
second author [3].

Theorem 1. The homogeneous linear equation

(1) t=A(t)x

18 reduced to the homogeneous linear equation

(2) y=B(t)y

under the transformation

(3) r=e%y

if and only if there exists a constant matrix S satisfying the equations
(4) At)=SA®t)—At)S—es-B(t)-e~5¢

(5) A(0)=S+ B(0).

3. Relations between the stability and the characteristic roots

of A(#). In the above Theorem 1, if we can choose a constant matrix
B, we can express the fundamental matrix of the system (1) by the
form
(6) D(t)=e5t. e,
In this case, the stability of the system (1) is completely decided by the
characteristic roots of S and B, therefore is independent of ones of
A(D).

Let the coefficient matrix A(¢) be given in the following form :



